Table of Contents

Prefac	e ·····	4
Сооре	rating Organizations	5
Organi	zing Committees	6
Confer	ence Information	7
Sched	Jle Overview ·····	10
Venue	Мар ·····	11
	able (Symposium Oral Sessions)	
	able (Symposium Poster Sessions)	
	Guide ······	
	y Lectures	
Cluste	r Keynotes	37
Cluste		
A. Fun	damentals for Materials	
A-	······································	
A-	2 Hydrogen in Functional Materials	06
A-	3 Recent Advances in Computational Materials Science: Bridging Computations and Experiments	11
A-	Neutrons for Materials Research 1	13
B. New	r Trend of Materials Research	17
B-	Data-Centric Science for Materials Research	18
B-:	2 Materials Integration: Fusion of Materials Science and Experiments through Data Science	22
B-3	Mathematical Materials Science -Mathematical Approaches for Materials Designs in the Data Driven Society	24
B		
C. Nov	el Structural Materials Based on New Principles ······ 13	
C-		
C-:		
C-		
C		
D Adv	anced Electronic Materials ·······	47
D. Auv		
D-:		-τU
	Competing Fields 1	53
D-	Science and Technology of Superconductivity	55
D	[5th E&J BLS] Wide-bandgap and 2-dimensional Materials1	64

E. Magne	et and Spintronics	···· 167
E-1	New Aspects of Understanding Magnetic Materials	••••• 168
E-2	Spin Conversion Phenomena in Spin Orbit Materials	••••• 172
E-3	Quantum State in Low Symmetry Environment Probed by Advanced Spin Polarized Quantum Beam	175
F. Energy	1	179
F-1	, Battery Materials for Sustainability	
F-2	Catalysis and Catalyst Materials for Energy and Environment	
F-3	Advancements in Thermoelectric Materials and Applications	
F-4	Synchrotron X-ray Probes for Mesoscale Materials Science	
G. Mater	ials for Smart Systems	
G-1	In-field Molecules for Next-generations Flexible Electronics	204
G-2	[5th E&J BLS] Materials Frontier for Transparent Advanced Electronics	206
G-3	Perovskite and Metal Halide Materials Based Photovoltaics and Optoelectronics	····· 212
G-4	Plasmonic Materials: from Fundamentals to Applications	····· 216
G-5	Synchrotron X-ray Characterization of Function Material Thin Films and Fine Particles	220
H. Green	Technology and Processing	223
H-1	Advanced Water Science and Technology	····· 224
H-2	Plasma-Based Synthesis, Processing and Characterization of Materials for Energy and Environment	232
H-3	[5th E&J BLS] Advanced Functional Oxides: Processing, Characterization and Devices	
H-4	A3+ Lead-free Piezoelectric Materials and Applications	242
H-5	Intelligent Material Processes with Low Environmental Load and Energy Consumption	
I. Biopoly	ymers·····	251
I-1	Bio-based Polymers	····· 252
I-2	Environmentally Degradable Polymers	253
I-3	Biodegradable Polymers for Biomedical Applications	256
Sponsors	s and Exhibitors ·······inside bac	k cover

Preface

Scope of MRM2019

Materials science is rapidly expanding across the traditional boundaries of physics, chemistry, biology, and earth science for achieving Sustainable Development Goals (SDGs). There are many issues in the world that need to be solved on a global scale. The future of humankind and the development of a sustainable society depend on the development of new materials and their integration in the energy-water-food nexus. To achieve this requires integration of modeling, basic theory, high throughput materials science, and advanced characterization in a new approach to science and technology.

The MRM2019 is intended to offer a venue to materials researchers from different disciplines to discuss recent scientific developments and applications of advanced materials for the SDGs. There are many new opportunities for invention and brilliant materials research, and implementation of new materials or processes, in fields far from our individual disciplines. Intensive discussions among participants with different background are expected to bring innovative ideas and strategic development for next generation materials research. The meeting will also provide active opportunities for young researchers to discuss their research projects, thus extending the groundwork for a successful network and for synergetic collaborations. A dialogue across the following topic areas with notable scientists who are world experts with diverse backgrounds in materials research will be constructed. Each topic area is of both current and future interest and must be addressed to achieve sustainability. The organizers welcome participants who are interested in materials research and expect an exciting and fruitful discussion.

Hideo HOSONO (Prof. Tokyo Tech) Chairperson of MRM2019

Hinto

Atsushi SUZUKI (Prof. YNU) General Secretary of MRM2019

Conference Information

Date	December 10 (Tue.) – 14 (Sat.)
Conference Site	Industry & Trade Center (Yokohama Symposia): Trade-0~3 Workpia Yokohama: Work-1~8 Hotel Mielparque Yokohama: Miel-1~5 Hotel Monterey Yokohama: Mont-1~5 Kanagawa Kenmin Hall: Ken-1~2 Yokohama City Port Opening Memorial Hall: Port-1~4
Registration Desk	Marineria, Industry & Trade Center 1F (Trade-0)
Registration Hours	December 10 (Tue.)11:00-18:00December 11 (Wed.)8:30-18:30December 12 (Thu.)8:30-18:30December 13 (Fri.)8:30-18:00
Welcome Party	December 10 (Tue.) 19:00–20:30 Work-1 & 2 (Oshidori & Kujaku), Workpia Yokohama, 2F
Banquet	December 12 (Thu.) 19:00–21:00 Rose Hotel Yokohama
Exhibition	Marineria, Industry & Trade Center 1F (Trade-0)
Exhibition Hours	December 11 (Wed.) 12:00–20:30 December 12 (Thu.) 9:30–18:00 December 13 (Fri.) 9:30–16:00
Emergency Contact	Secretariat for MRM2019 Email: info_mrm2019@jmru.org Phone: 070-3157-6169 (Connected only for the conference period , Dec. 9 - Dec. 14, 2019)
Plenary Lectures	 [Plenary Session 1] December 10 (Tue.) 15:00–15:40 Place: Trade-1 (Industry & Trade Center) Hans-Joachim Freund (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany) [Plenary Session 2] December 10 (Tue.) 15:50–16:30 Place: Trade-1 (Industry & Trade Center) Jean-Marie Tarascon (College de France, France)
	[Plenary Session 3] December 10 (Tue.) 16:40–17:20 Place: Trade-1 (Industry & Trade Center) Marius Grundman (Universitat Leipzig Institut fur Experimentelle Physik, Germany)
	[Plenary Session 4] December 10 (Tue.) 17:30–18:20 Place: Trade-1 (Industry & Trade Center) Shinji Tsuneyuki (University of Tokyo, Japan)

	[Plenary Session 5] December 11 (Wed.) 13:00–13:40 Place: Ken-1 (Small Hall, Kanagawa Kenmin Hall) Easo P George (Oak Ridge National Laboratory and the University of Tennessee, USA)
	[Plenary Session 6] December 12 (Thu.) 13:00–13:40 Place: Ken-1 (Small Hall, Kanagawa Kenmin Hall) David S. Ginley (NREL Fellow, USA)
	[Plenary Session 7] December 13 (Fri.) 13:00–13:40 Place: Ken-1 (Small Hall, Kanagawa Kenmin Hall) Michael Coey (Trinity College Dublin, Ireland)
Cluster Keynote	Place: Ken-1 (Small Hall, Kanagawa Kermin Hall) A Cluster December 11 (Wed.) 16:30–18:30 B Cluster December 12 (Thu.) 9:30–12:00 C Cluster December 13 (Fri.) 14:00–16:00 D Cluster December 12 (Thu.) 14:00–16:00 E Cluster December 11 (Wed.) 9:30–12:05 F Cluster December 12 (Thu.) 16:30–18:30 G Cluster December 13 (Fri.) 9:30–11:50 H Cluster December 11 (Wed.) 14:00–16:00 I Cluster December 13 (Fri.) 16:30–18:00
Oral Presentation	December 11 (Wed.) Oral Session 1, Oral Session 2, Oral Session 3 December 12 (Thu.) Oral Session 4, Oral Session 5, Oral Session 6 December 13 (Fri.) Oral Session 7, Oral Session 8, Oral Session 9 December 14 (Sat.) Oral Session 10
Poster Session	Place: Trade-0 (Marineria)Poster 1December 11 (Wed.)SymposiumF-2, H-1Set up9:00-11:30Poster Display12:00-13:00RemovalUntil 14:00
	Poster 2 December 11 (Wed.) Symposium A-3, B-4, C-1, D-1, D-2, D-3, D-4, E-2, F-3, H-1 Set up 16:00-19:00 Poster Display 19:00-20:30 Removal Until 21:00
	Poster 3 December 12 (Thu.) Symposium B-1, B-3, H-2, H-3, H-4 Set up 9:00-14:00 Poster Display 14:00-15:30 Removal Until 16:00

Poster 4 December	12 (Thu.)
Symposium	A-1, A-4, C-2, C-3, E-1, G-2
Set up	16:00-16:30
Poster Display	16:30-18:00
Removal	Until 18:30

Poster 5 December 13 (Fri.)

Symposium	E-3, F-1, I-1, I-2
Set up	9:00-14:00
Poster Display	14:00-15:30
Removal	Until 16:30

Poster 6 December 13 (Fri.)

Symposium	A-2, C-4, F-4, G-1, G-3, G-4, G-5, H-5
Set up	17:00-19:00
Poster Display	19:00-20:30
Removal	Until 21:00

Tutorial December 10 (Tue.) Only in Japanese

[Tutorial Session 1]

12:00–12:50 Work-1 (Oshidori, Workpia Yokohama) What we can know from first-principles quantum calculations Speaker: Toshio Kamiya (Laboratory for Materials and Structures (MSL), Institute of Innovative Research (IIR), Tokyo Institute of Technology (Tokyo Tech)) Chair: Shunichi ARISAWA (National Institute for Materials Science)

[Tutorial Session 2]

12:55–13:45 Work-1 (Oshidori, Workpia Yokohama)

Sparse modeling for Materials informatics

Speaker: Yasuhiko Igarashi (Graduate School of Frontier Sciences, The University of Tokyo) Chair: Shunichi ARISAWA (National Institute for Materials Science)

[Tutorial Session 3]

13:50–14:40 Work-1 (Oshidori, Workpia Yokohama)

Materials Informatics and Physics Informatics by Interpretable Machine Learning Speaker: Yuma Iwasaki (Central Research Laboratories, NEC Corporation) Chair: Shunichi ARISAWA (National Institute for Materials Science)

[Tutorial Session 4]

12:00–12:50 Work-2 (Kujaku, Workpia Yokohama)

How to start using neutron and muon at J-PARC

Speaker: Kazuki Ohishi (Comprehensive Research Organization for Science and Society (CROSS)) Chair: Takaaki AOKI (Institute for Information Management and Communication, Kyoto University)

[Tutorial Session 5]

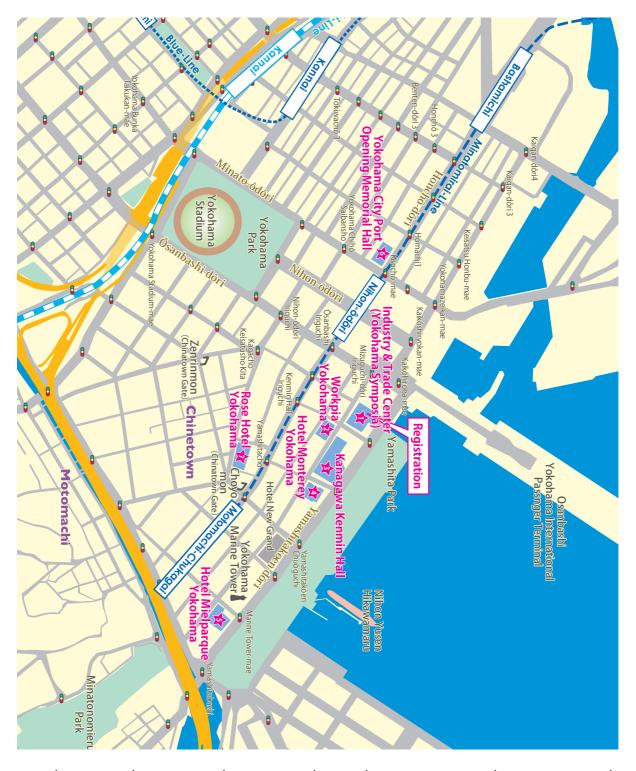
12:55–13:45 Work-2 (Kujaku, Workpia Yokohama)

Application of Synchrotron Radiation Research and Use of SPring-8

Speaker: Toyohiko Kinoshita (Japan Synchrotron Radiation Research Institute (JASRI)) Chair: Takaaki AOKI (Institute for Information Management and Communication, Kyoto University)

[Tutorial Session 6]

13:50–14:40 Work-2 (Kujaku, Workpia Yokohama)


New trend in materials science by integration of quantum beam analysis and machine learning

Speaker: Tetsuro Ueno (National Institutes for Quantum and Radiological Science and Technology) Chair: Takaaki AOKI (Quantum Beam Science Research Directorate, Institute for Information Management and Communication, Kyoto University)

Schedule Overview

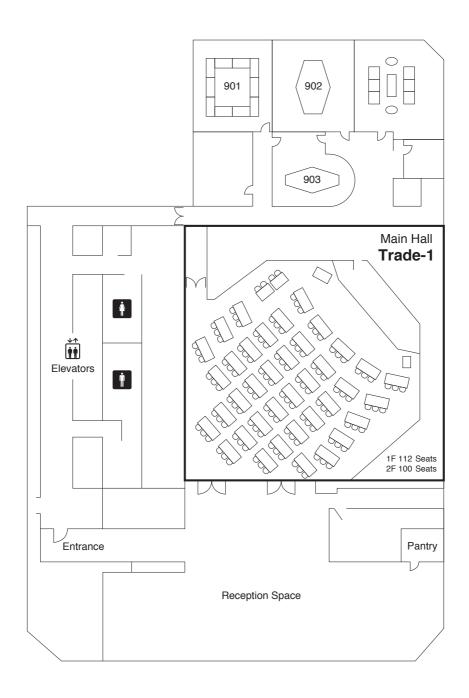
	Dec. 10 (Tue.)	Dec. 11 (Wed.)	Dec. 12 (Thu.)	Dec. 13 (Fri.)	Dec. 14 (Sat.)
8:30		8:30-18:30 Registration	8:30–18:30 Registration	8:30–18:30 Registration	
9:00		Oral Session 1	Oral Session 4 9:00-11:30 A-1 / A-4 / C-1 / C-2 /	Oral Sesssion 7 9:00-11:30 A-2 / A-4 / B-2 / B-3 / C-2 /	
10:00		9:00-11:30 A-1 / A-3 / A-4 / B-1 / B-3 / B-4 / C-1 / D-1 / D-3 / D-4 / F-2 / F-3 / G-2 / H-1 / H-2 / H-3 9:30-12:05	C-3 / C-4 / D-1 / D-2 / D-3 / D-4 / E-3 / F-1 / F-3 / G-2 / G-3 / H-1 / H-2 / H-3 / H-4 / H-5 9:30-12:00 A-2	C-3 / C-4 / D-1 / D-3 / E-1 / E-3 / F-1 / F-3 / F-4 / H-2 / H-3 / H-4 / H-5 / I-1 / I-2 / I-3 9:30-12:00 A-2 / B-2 / B-3 / C-3 / F-4	9:00-11:30 Oral Session 10 D-3 / I-3
11:00	11:00-18:00 Registration	E Cluster Keynote	9:30-12:00 B Cluster Keynote	9:30-11:50 G Cluster Keynote	
12:00	12:00-12:50 Tutorial 1 Tutorial 4	12:00-13:00 Poster Session 1			
13:00	12:55–13:45 Tutorial 2 Tutorial 5	13:00-13:40 Plenary 5 Easo P George	13:00-13:40 Plenary 6 David S. Ginley	13:00-13:40 Plenary 7 Michael Coey	
14:00	13:50-14:40 Tutorial 3 Tutorial 6	14:00-16:00 Oral Session 2 A-1 / A-3 / A-4 / B-1 / B-3 / B-4 / C-1 / C-3 / D-1 / D-3 /	14:00-16:00 Oral Session 5 A-1 / A-2 / A-4 / B-2 / C-1 / C-2 / C-3 / C-4 / E-1 / E-3 / F-1 / F-3 / G-2 / G-3 / G-4 / H-1 / H-5 / I-2	14:00-16:00 Oral Session 8 A-2 / B-2 / B-3 / D-1 / D-3 / E-1 / F-3 / F-4 / G-1 / G-2 / G-3 / G-4 / G-5 / H-3 / H-4 / H-5 / I-3	
15:00	14:50-15:00 Opening Hideo Hosono Tokyo. Tech. / Chairperson of MRM2019 15:00-15:40	D-4 / E-2 / E-3 / F-2 / F-3 / G-2 14:00-16:00 H Cluster Keynote	14:00-16:00 D Cluster Keynote 14:00-15:30 Poster Session 3	14:00-16:00 C Cluster Keynote 14:00-15:30 Poster Session 5	
16:00	Plenary 1 Hans-Joachim Freund 15:50–16:30 Plenary 2		16:20, 10:20		
17:00	Jean-Marie Tarascon 16:40–17:20 Plenary 3 Marius Grundman 17:30–18:20 Plenary 4 Shinji Tsuneyuki	16:30-18:30 Oral Session 3 B-1 / B-3 / B-4 / C-1 / C-3 / D-1 / D-3 / D-4 / E-2 / E-3 / F-2 / F-3 / G-2 / H-1 / H-2 / H-3 / H-4 / H-5 16:30-18:30	16:30-18:30 Oral Session 6 B-1 / B-2 / B-3 / C-1 / C-4 / D-1 / D-2 / D-3 / D-4 / E-3 / G-3 / G-4 / H-1 / H-2 / H-3 / H-4 / H-5 / I-2 / I-3 16:30-18:30 F Cluster Keynote	16:30-18:30 Oral Session 9 A-2 / B-2 / B-3 / C-3 / C-4 / D-3 / E-1 / F-3 / F-4 / G-1 / G-2 / G-3 / G-4 / G-5 / H-5 16:30-18:30	
18:00	18:20-18:30 Short Message	A Cluster Keynote	16:30-18:00 Poster Session 4	I Cluster Keynote	
19:00	19:00-20:30	19:00-20:30		19:00-20:30	
20:00	Welcome Reception	Poster Session 2	19:00-21:00 Banquet	Poster Session 6	

Venue Map

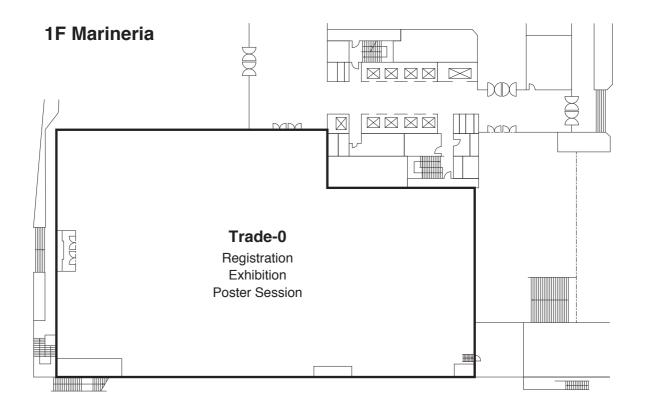
X					•					2	сл									6									N)	
Kose Hote Banquet (Port-4	Port-3	Port-2	Port-1	Yokohama	Miel-5	Miel-4	Miel-3	Miel-2	Miel-1	Hotel Mi	Mont-5	Mont-4	Mont-3	Mont-2	Mont-1	HOTEL Mo	Ken-2	Ken-1	Kanagawa	Work-8	Work-7	Work-6	Work-5	Work-4	Work-3	Work-2	Work-1	Workpia Y				Trade-0	Trade-3	Trade-2		Industry &
Kose Hotel Yokonama Banquet (The Grand Rose Ballroom 2F)	Room 9 (2F)	Room 7 (2F)	Room 6 (2F)	Room 1 (1F)	City Port Opening Memorial Hall	Hisui (2F)	Ruby (2F)	Kohaku (2F)	Etoile (2F)	Cherie (2F)	Mielparque Yokohama	Hall VICTORIA (3F)	AJISAI • ICHOU (2F)	RICHMOND (2F)	Hall KENSINGTON (2F)	Hall MAPLE (1F)	HOTEL Monterey Yokohama	Conference Room (large) (6F)	Small Hall (1F)	Kenmin Hall	Room 301 (3F)	Room 302 (3F)	ICHOU (3F)	KAMOME (3F)	YAMAYURI (3F)	Room 201 (2F)	KUJAKU (2F)	OSHIDORI (2F)	Yokohama	Poster session (1F)	Exhibition (1 F)	Registration (1F)	Marineria (1F)	Spacial Meeting Room (8F)	Room 803+804 (8F)	Main Hall (9F)	Trade Center (Yokohama Symposia)

Time Table (Symposium Oral Sessions)

п 5		E-2		2	2	1	2	1.0.2	D-3 (2)	5	Р	¢,	ب		<u> </u>	4	2	((2	C 1	2	<u> </u>	2	ц 4	2	8-3	5	8-2	2	<u>प</u>	2	A-4	2)	۵ ۵	2	Δ-3	Ą	2		Symposium Time / Room
Noti I	Kon-1	Keynote	E Cluster	9:30-12:00		Trade-3	9:00-11:30			Trade-1	9:00-11:40			Work-4	9:00-11:30							Mont-1	9:00-11:20	Work-8	9:00-11:30	Work-3	9:00-11:20			Miel-1	9:00-11:30	Miel-4	9:00-11:30	Mont-2	9:00-11:35			Mont-5	9:00-11:20	Oral Session 1	
14:00-16:00		Miel-5	14:00-16:20			Trade-3	14:00-16:00			Trade-1	14:00-16:00			Work-4	14:00-16:00			Work-6	14:00-16:05			Mont-1	14:00-16:10	Work-8	14:00-16:00	Work-3	14:00-16:00			Miel-1	14:00-16:00	Miel-4	14:00-15:55	Mont-2	14:00-15:55			Mont-5	14:00-16:00	Oral Session 2	Dec. 11
16:30-18:35		Miel-5	16:30-18:35			Trade-3	16:30-18:30			Trade-1	16:30-18:30			Work-4	16:30-18:30			Work-6	16:30-18:25			Mont-1	16:30-18:30	Work-8	16:30-18:30	Work-3	16:30-18:40			Miel-1	16:30-18:30			Ken-1	Keynote	A Cluster	16:30-18:30			Oral Session 3	
9:00-11:30						Miel-5	9:00-11:30			Work-1	9:00-12:10	Work-7	9:00-11:30	Mont-3	9:00-11:30	Work-4	9:00-11:30	Work-6	9:00-11:25	Work-8	9:00-11:30	Mont-1	9:00-11:20		l	Ken-1	Keynote	B Cluster	9:30-12:00			Mont-2	9:00-11:15			Ken-2	9:30-12:15	Mont-5	9:00-11:20	Oral Session 4	
14:00-16:05				Mont-3	14:00-16:00				Ken-1	Keynote	D Cluster	14:00-16:00	<u> </u>		<u> </u>	Work-4	14:00-16:10	Work-6	14:00-15:45	Work-8	14:00-16:00	Mont-1	14:00-15:55					Port-3	14:00-16:10			Mont-2	14:00-16:15			Ken-2	14:00-16:30	Trade-1	14:00-15:50	1 Oral Session 5	Dec. 12
16:30-18:55	+					Work-6	16:30-18:30			Work-1	16:30-18:30	Work-7	16:30-18:30	Mont-3	16:30-18:30	Work-4	16:30-18:30					Mont-1	16:30-17:30			Port-2	16:30-18:30	Port-3	16:30-18:20	Port-1	16:30-18:30									5 Oral Session 6	-
9:00-11:45	+			Mont-4	9:00-11:30			Work-6	9:00-12:10	Work-1	9:00-12:10			Mont-3	9:00-11:30	Work-4	9:00-11:40	Port-1	9:30-11:50	Work-8	9:00-11:30					Port-2	9:30-11:40	Port-3	9:30-11:30			Miel-5	9:00-11:35			Ken-2	9:30-11:45			6 Oral Session 7	
				Mont-4	14:00-16:00			Work-6	14:00-16:00	Work-1	14:00-16:00			Mont-3	14:00-16:00			Ken-1	Keynote	C Cluster	14:00-16:00					Port-2	14:00-15:50	Port-3	14:00-15:50							Ken-2	14:00-15:40			7 Oral Session 8	Dec. 13
				Mont-4	0 16:30-17:30			Work-6	0 16:30-18:30	Work-1	0 16:30-18:30				0	Miel-5	16:30-18:30	Port-1	16:30-18:25		0					Port-2	0 16:30-18:00	Port-3	0 16:30-18:30							Ken-2	0 16:30-17:30			8 Oral Session 9	-
					0				0	Work-1	0 9:00-12:20						0		5								0		0								0			9 Oral Session 10	Dec. 14
					:	2	: 5		: 		<u> </u>		: E		: H		E		Ę	3		Ğ	2			- G	2		2	<u>q</u>	2	1		į	5		r F		1		Symposium Time / Room
																Miel-2	9:00-11:20	Mont-3	9:00-11:30	Miel-3	9:00-11:45							Work-1	9:00-11:30					Work-2	9:00-12:05	Work-5	9:00-12:15			Oral Session 1	
													<u> </u>		Ken-1	keynote	H Cluster	14:00-16:00										Work-1	14:00-16:00					Work-2	14:00-16:00	Work-5	14:00-16:10			1 Oral Session 2	Dec. 11
												Mont-5	16:30-18:35	Miel-4	16:30-18:30	Miel-2	16:30-18:30	0 Mont-3	16:30-18:30	Miel-3	16:30-18:30							Work-1	0 16:30-18:30					Work-2	0 16:30-18:30	Work-5	0 16:30-18:40			2 Oral Session 3	
												Trade-2	5 9:00-11:30	Miel-4	0 9:00-11:00	Work-2	0 9:00-11:25	Work-3	0 9:00-11:30	Miel-3	0 9:00-12:25					Miel-1	9:00-11:30	Miel-2	0 9:00-11:30					Trade-1	0 9:00-12:05		0	Work-5	9:00-11:30	3 Oral Session 4	
								Mont-4	14:00-16:00			Trade-2) 14:00-16:00)					Miel-3	5 14:00-16:00			Miel-5	14:00-16:00	Miel-1) 14:00-16:00	Miel-2	0 14:00-16:00					Work-2	5 14:00-16:10			Work-5) 14:00-16:05	14 Oral Session 5	Dec. 12
						Mont-2	16:30-18:25	Mont-4	00 16:30-18:30			Trade-2	00 16:30-18:25	Miel-4	16:30-18:45	Work-2	16:30-18:30	Work-3	16:30-18:30	Miel-3	00 16:30-18:40			Miel-5	00 16:30-18:05	Miel-1	00 16:30-18:30		00					Ken-1	10 Keynote	F Cluster	16:30-18:30)5	n 5 Oral Session 6	
						Mont-2	25 9:00-11:25		30 Mont-1		9:00-11:20	Mont-5	25 9:00-11:30	Miel-4	15 9:00-11:00	Miel-2	30 9:00-11:30	Work-3	30 9:00-11:30		5)5 Ken-1	Keynote		9:30-12:00				Port-4	9:30-11:40	Work-2	9:00-12:05		ŏ	Work-5	9:00-11:20	n 6 Oral Session 7	
						Mont-2	25 14:00-15:52				Ő	Work-5	30 14:00-16:00	Miel-4	00 14:00-15:30	Miel-2	30 14:00-15:40		ŏ			Work-8	14:00-16:10	Work-4	14:00-16:05	Miel-3	r 14:00-16:00	00 Trade-1	14:00-16:00	Work-3	14:00-16:20	Port-4	10 14:00-16:00	Work-2	05 14:00-16:10				0	n 7 Oral Session 8	Dec. 13
							52			16:		-			30		-40					Work-8	:10 16:30-18:20	Work-4	:05 16:30-18:00	Miel-3	:00 16:30-18:40	Trade-1	:00 16:30-17:30	Work-3	:20 16:30-18:30	Port-4	:00 16:30-18:20	Work-2	:10 16:30-18:45					on 8 Oral Session 9	
							Ken-1	Keynote	l Cluster	16:30-18:00		Work-5	16:30-18:25									å		4	<u></u>	ώ		<u> </u>	21	ω.		4	100	k-2	18					ssic	

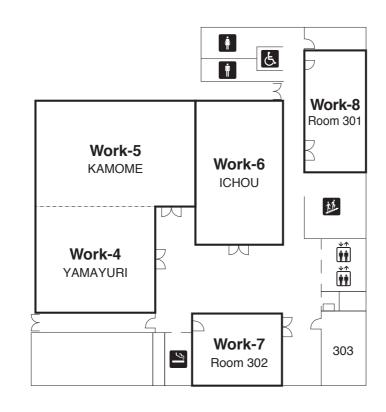

Time Table (Symposium Poster Sessions)

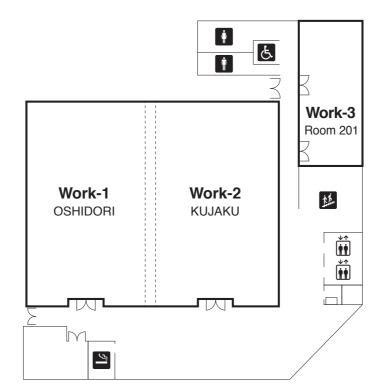
	Dec	. 11	Dec	. 12	Dec		
	Poster 1	Poster 2	Poster 3	Poster 4	Poster 5	Poster 6	
	11:30-14:00	19:00-20:30	14:00-15:30	16:30-18:00	14:00-15:30	19:00-20:30	
A-1				0			A-1
A-2						0	A-2
A-3		0					A-3
A-4				0			A-4
B-1			0				B-1
B-2							B-2
B-3			0				B-3
В-4		0					B-4
C-1		0					C-1
C-2				0			C-2
C-3				0			C-3
C-4						0	C-4
D-1		0					D-1
D-2		0					D-2
D-3		0					D-3
D-4		0					D-4
E-1				0			E-1
E-2		0					E-2
E-3					0		E-3
F-1					0		F-1
F-2	0						F-2
F-3		0					F-3
F-4						0	F-4
G-1						0	G-1
G-2				0			G-2
G-3						0	G-3
G-4						0	G-4
G-5						0	G-5
H-1	0	0					H-1
H-2			0				H-2
Н-3			0				Н-3
H-4			0				H-4
H-5						0	H-5
1-1					0		l-1
1-2				<u> </u>	0		I-2
1-3				<u> </u>			I-3


Floor Guide

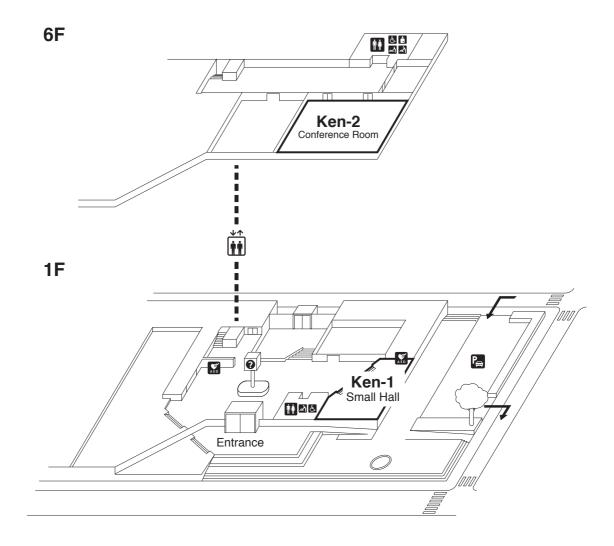
Industry & Trade Center Yokohama Symposia

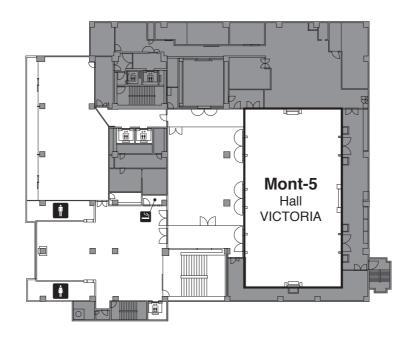
9F



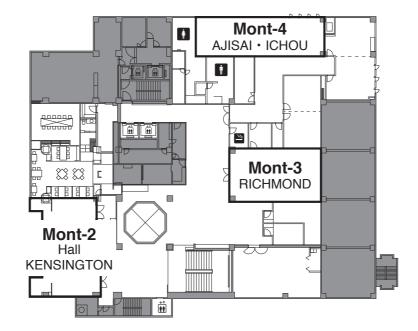


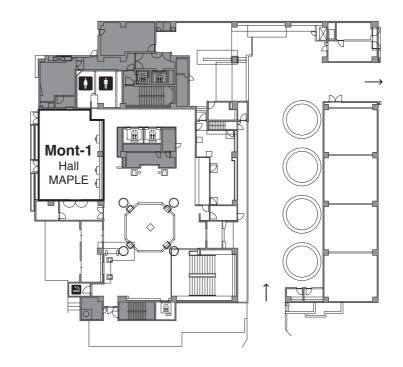
Workpia Yokohama


3F

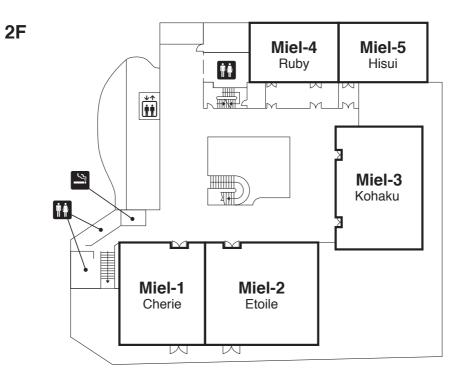

2F

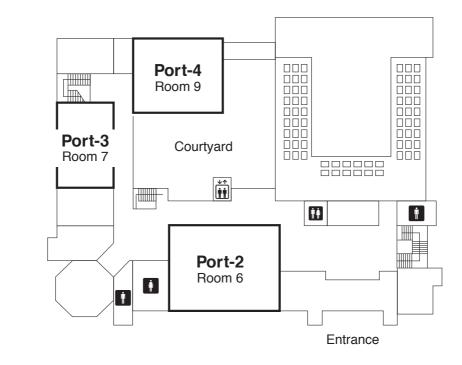
Kanagawa Kenmin Hall




HOTEL Monterey Yokohama

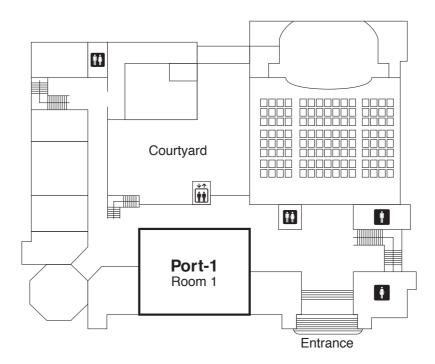
3F


2F



1**F**

Hotel MielParque Yokohama



Yokohama City Port Opening Memorial Hall

1**F**

2F

Plenary Lectures

- PL-1 Experimental Modelling of Catalyst Materials at the Atomic Scale
- PL-2 Materials science for better batteries Achievements and future trends
- PL-3 (Al,Ga)₂O₃ and (In,Ga)₂O₃ Alloy Semiconductors in Various Crystal Phases: Physical Properties, Pseudomorphic Epitaxy and Device Perspectives
- PL-4 First-Principles Material Simulation and Beyond
- PL-5 High-entropy alloys
- PL-6 The Terrawatt Opportunity: new materials paradigms toward sustainability
- PL-7 Magnetic Materials: Innovation and Sustainable Development

December 10-13, 2019 -

Plenary Lectures

- December 10, 2019 -

Opening

Session 1-4

Opening Hideo Hosono Tokyo. Tech. / Chairperson of MRM2019 14:50–15:00

PL-1

15:00-15:40

Experimental Modelling of Catalyst Materials at the Atomic Scale

Hans-Joachim Freund

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany

Chairperson: Tsunehiro Tanaka (Kyoto University)

PL-2

15:50-16:30

Materials Science for Better Batteries Achievements and Future Trends

Jean-Marie Tarascon

College de France, France

Chairperson: Atsuo Yamada (The University of Tokyo)

PL-3

16:40-17:20

(Al,Ga)₂O₃ and (In,Ga)₂O₃ Alloy Semiconductors in Various Crystal Phases: Physical Properties, Pseudomorphic Epitaxy and Device Perspectives

Marius Grundman

Universitat Leipzig Institut fur Experimentelle Physik, Germany Chairperson: Yuzo SHIGESATO

(Aoyama Gakuin University)

PL-4

17:30-18:20

First-Principles Material Simulation and Beyond

Shinji Tsuneyuki

The University of Tokyo, Japan

Chairperson: Hidetoshi FUKUYAMA

(Tokyo University of Science)

- December 11, 2019 -**Session 5**

13:00-13:40

High-Entropy Alloys

Easo P George Oak Ridge National Laboratory and the University of Tennessee, USA

Chairperson: Isao Tanaka (Kyoto University)

December 12, 2019

Session 6

PL-6

PL-5

13:00-13:40

The Terrawatt Opportunity: New Materials Paradigms Toward Sustainability

David S. Ginley

NREL Fellow, USA

Chairperson: Hideo Hosono (Tokyo Institute of Technology)

December 13, 2019

Session 7

PL-7

13:00-13:40

Magnetic Materials: Innovation and Sustainable Development Michael Coey Trinity College Dublin, Ireland Chairperson: Hisazumi Akai

(The University of Tokyo)

PL-1 Experimental Modelling of Catalyst Materials at the Atomic Scale

Hans-Joachim Freund

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany

Hans-Joachim Freund is a scientific member and director at the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin where he is head of the Department of Chemical Physics. The department is dedicated to the study of model catalysts, applying a large number of techniques and instruments, some of which were newly developed within the department to investigate oxide surfaces and oxide metal interfaces. He serves as Adjunct Professor at five universities in Germany and UK. He received awards in Europe, the US, and Asia. He is a member of six Academies including the German National Academy of Sciences Leopoldi-na and the American Academy of Arts and Sciences and holds three honorary Doctorates. He received the Gaede-Langmuir Award of the American Vacuum Society and is the recipient of the 2015 Michel Boudart for the Advancement of Catalysis by the North American Catalysis Society and the European Federation of Catalysis Societies. He is Fellow of the American Physical Society and has published more than 815 scientific papers with more than 45.000 citations and given

about 770 invited talks. He has held a number of named lectureships around the world. He has educated more than 130 PhD students and collabo-rated with more than 80 postdoctoral associates.

PL-2

Materials science for better batteries Achievements and future trends

Jean-Marie Tarascon College de France, France

Jean-Marie Tarascon (1953) is Professor at the College de France holding the chair "Chemistry of solids – Energy). But much of his early career was spent in the United States where he discovered new electrolytes for Li-ion developed (1994) the plastic Li-ion technology. Back to France in 1995, he created the European network of excellence ALISTORE-ERI and more recently the French network on electrochemical energy storage (RS2E). Tarascon's present research is devoted to batteries with emphasis on designing new materials and electrolytes, developing new eco-efficient synthesis processes, understanding reaction mechanisms, identifying novel reactivity concepts, and exploring chemistries beyond Li. ... He is the author of more than 650 scientific papers, and detains ~100 patents. He received many honours, with the last ones in 2017 being the CNRS innovation medal, the Galvani medal and the Eric and Sheila Samson Prime Minister's Prize.

PL-3

(Al,Ga)₂O₃ and (In,Ga)₂O₃ Alloy Semiconductors in Various Crystal Phases: Physical Properties, Pseudomorphic Epitaxy and Device Perspectives

Marius Grundman

Universitat Leipzig Institut fur Experimentelle Physik, Germany

Marius Grundmann received his PhD (Dr. rer. nat., 1991) from Technische Universität Berlin (TUB). In 1992 he worked as post-doc at Bellcore, Red Bank, NJ, on quantum wires, then at TUB on selforganized semiconductor III-V quantum dots and devices based on them. Since 2000 he is professor for semiconductor physics at Universität Leipzig. His research interest is focused on oxide semiconductors in the form of bulk, thin films, heterostructures, microcavities and nanostructures for the use in transparent electronic devices and nanosystems. Among his most recent scientific achievements are the first general model for Raman scattering in anisotropic crystals, exceptional points in anisotropic micro-cavities and devices from amorphous zinc-tin-oxide and (p-type) copper iodide. He has published three books and over 550 journal papers with an h-index of 64 (WoS). He is a member of DPG, MRS, APS and Sächsische Akademie der Wissenschaften zu Leipzig. He currently serves as Director of the Felix Bloch Institute for Solid State Physics of Universität Leipzig.

PL-4 First-Principles Material Simulation and Beyond

Shinji Tsuneyuki

University of Tokyo, Japan

Shinji TSUNEYUKI is a Professor in the Department of Physics, School of Science, The University of Tokyo from 2007. He received Ph. D on Physics at The University of Tokyo in 1990. His current research interest is in developing and applying methods of computational physics to clarify the physics of materials, to predict material properties, and to create new materials. Areas of current research include the transcorrelated method, a first-principles wave function theory for condensed matter; electronic properties and structural transformation of materials under high pressure; thermal properties of materials; microscopic understanding of laser ablation; data assimilation and structure prediction of crystals. He won the IBM Japan Science Prize in Physics in 2001.

Since 2010, he has been working for the application software development project for the K computer and the post-K computer as a representative of the field of device and materials science.

1987-1992	Research Associate, Department of Physics, The University of Tokyo, Japan
1992-2002	Associate Professor, The Institute for Solid State Physics, The University of Tokyo
2002-2007	Associate Professor, Department of Physics, School of Science, The University of Tokyo, Japan
2007-present	Professor, Department of Physics, School of Science, The University of Tokyo, Japan
	Concurrent Professor, The Institute for Solid State Physics, The University of Tokyo, Japan
2011-present	Manager of the Center of Computational Materials Science, The Institute for Solid State Physics, The University of
	Tokyo, Japan

Current Research: Condensed Matter Physics Theory, Computational Materials Science

PL-5

High-entropy alloys

Easo P George

Oak Ridge National Laboratory and the University of Tennessee, USA

Position: Governor's Chair for Advanced Alloy Theory and Development

Brief bio: Prior to taking up his current position, George was Professor of Materials Design and Director of the Center for Interface Dominated High Performance Materials at the Ruhr University Bochum in Germany. Before that, he was a distinguished research staff member at ORNL where he led the Alloy Behavior and Design Group and was a joint faculty professor of materials science and engineering at UT. George earned his PhD in materials science and engineering from the University of Pennsylvania, Philadelphia and BTech in metallurgical engineering from the Indian Institute of Technology, Kanpur. His current research interests include the physical metallurgy and mechanical properties of high-entropy alloys for structural applications, iridium and other refractory metals for space power applications, and size effects on mechanical behavior.

PL-6 The Terrawatt Opportunity: new materials paradigms toward sustainability

David S. Ginley NREL Fellow, USA

Dr. David S. Ginley is currently Chief Scientist for Materials and Chemistry Science and Technology and a Research Fellow at the National Renewable Energy Laboratory. He received his PhD in Inorganic Chemistry from MIT and his BS in Chemistry from the Colorado School of Mines. He directed the Solar Energy Center for India and the US (SERIIUS) and is chief experimentalist for the EFRC Center for Next Generation Materials by Design. Current work focuses on advancing solar and geothermal energy conversion and storage specifically in the areas of development and application of new materials by computational materials design in the areas of transparent conducting oxides, organic electronics materials, nano-materials and the development of process technology for materials and device development including; combinatorial methods, direct write materials, composite materials and nonvacuum processing for materials in extreme environments. A key focus is looking at how to significantly reduce the cost of renewable generated energy through novel devices and processing. He has over 400 publications and 40 patents.

PL-7

Magnetic Materials: Innovation and Sustainable Development

Michael Coey Trinity College Dublin, Ireland

Michael Coey is Professor Emeritus at Trinity College Dublin, Ireland, and author of several books and many papers on magnetism and magnetic materials. These include contributions to amorphous and disordered magnetic materials, permanent magnetism, magnetism of soils and minerals, dilute oxides and magneto-electrochemistry, with more recent work on magneto-microfluidics, spin electronics, d-zero magnetism and half metals. A Fellow of the Royal Society and Foreign Associate of the National Academy of Science, he has served as Chairman of the IUPAP Magnetism Commission, and Divisional Associate Editor of Physical Review Letters. He founded Magnetic Solutions Ltd and the Trinity College Science Gallery, and was a promoter of CRANN, Ireland's nanoscience research centre. He was awarded the 2019 Max Born Medal by the German Physical Society.

Experimental Modelling of Catalyst Materials at the Atomic Scale

^{*}Hans-Joachim Freund¹

¹ Fritz Haber Institute of the Max Planck Society, Berlin, 14195, Germany,

*<u>freund@fhi-berlin.mpg.de</u>

Keywords: Model Catalysts, Strong Metal-Supported Interaction, Confined Space, Reaction at Metal-Oxide Interface,

In order to capture the complexity of real powder catalysts, we have tried to develop an approach that adds complexity in a controlled way starting from simple model systems. The experimental techniques come from the tool box of surface science. We will discuss a number of systems addressing different questions, including:

- a) Which role is played by the metal oxide interface in a chemical reaction involving charge transfer? (Fig.1)¹
- b) What is the role of the Strong Metal Support Interaction (SMSI) of supported catalysts in a simple oxidation reaction such as CO oxidation?²
- c) Is it possible to use surface science approaches to learn something about confined space reactions? (Fig.2)³

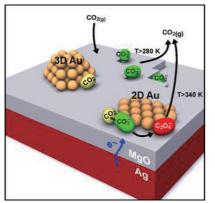


Fig. 1. Thin film MgO/Ag system controlling the morphology and electron charge transfer of supported Au nano-particles in CO₂ activation

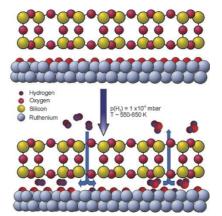


Fig. 2. Water formation in confined space between a crystalline/vitreous silica film and a Ru(1000) surface in direct comparison to the open space reaction.

References:

1) F. Calaza, C. Stiehler, Y. Fujimori, M. Sterrer, S. Beeg, M. Ruiz-Oses, N. Nilius, M. Heyde, T. Parviainen, K. Honkala, H. Häkkinen, H.-J. Freund, Angew. Chem. Int. Ed. 54, 12484-12487 (2015).

2) K. Zhang, L. Li, S. Shaikhutdinov, H.-J. Freund, Angew. Chem. Int. Ed. 57, 1261-1265 (2018).

3) M.J. Prieto, H.W. Klemm, F. Xiong, D.M. Gottlob, D. Menzel, T. Schmidt, H.J. Freund, Angew. Chem. Int. Ed. 57, 8749-8753 (2018).

Materials science for better batteries Achievements and future trends

Jean-Marie Tarascon

Collège de France, - UMR CNRS 8260, 11 Place Marcelin Berthelot, 75005 Paris, France Réseau sur le Stockage Electrochimique de l'Energie (RS2E) - FR CNRS 3459, 80039 Amiens Cedex, France

jean-marie.tarascon@college-de-france.frabc@defg.hij.ac.jp

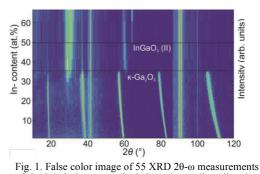
Li-ion, Na-ion, batteries, anionic-redox, sensing

Research's progresses in rechargeable batteries are driven by ever increasing demands for portable electronic devices as well as for powering electric vehicles and providing load-leveling for mass storage of renewable energy. Li-ion batteries are the systems of choice for the aforementioned applications. Therefore, for this to fully happen, new concepts and new sustainable chemistries are sorely needed, and this is what this presentation will address.

Firstly, regarding new concepts, we will show how the discovery of a new Li reaction mechanism that involves the anionic network with the reversible formation of dimers (O-O) represents a transformational approach for creating electrode materials with exacerbated capacities⁽¹⁾. Towards, higher energy density systems, recent advances on solid state Li batteries will be discussed. Concerning new chemistry, we will present our new findings with the Na-ion chemistry which enlists novel materials/electrolyte designs⁽²⁾ and the assembly of practical 18650 prototypes prior to touch on our recent studies with aqueous systems. Lastly, an indirect way to enhance simultaneously energy density and sustainability via the use of sensing and self-healing functionalities will be introduced. Through these examples, we hope to convey that the future of battery offers new opportunities for materials scientists as long as we are willing to explore new risky paths.

References:

- 1) Assat, G., Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries (2018) *Nature Energy*, 3 (5), pp. 373-386
- 2) Guochun Yan, Sathiya Mariyappan, Gwenaelle Rousse, Quentin Jacquet, Michael Deschamps, Renald David, Boris Mirvaux, John William Freeland, Jean-Marie Tarascon., Higher energy and safer sodium ion batteries via an electrochemically made disordered Na₃V₂(PO₄)₂F₃ material (2019) Nature Communications, 10, pp. 585


*Marius Grundmann1

¹ Universität Leipzig, Felix Bloch Institute for Solid State Physics, Leipzig, 04105, Germany *grundmann@physik.uni-leipzig.de

Keywords: Oxide Semiconductors, Sesquioxides, Gallium Oxide, Heterostructures

The binary sesquioxide semiconductor Ga_2O_3 and related materials have been in research focus for a few years due to its possible use in high power transistor applications [1]. Electromobility and renewable energies drive the demand for devices that can surpass the performance of SiC or GaN. Epitaxial layers of this material have been realized by us in various phases using physical [2] and chemical [3] methods. Other devices such as (deep) UV photodetectors, transparent inter-subband detectors and HEMT can be envisioned from hetero-structures employing (In,Ga)₂O₃ or (Al,Ga)₂O₃ alloy layers. Especially interesting for HEMT's is the κ -phase, exhibiting possibly a large spontaneous polarization and high electron interface density (2DEG).

Similar to the situation in arsenide and nitride alloy semiconductors, the oxide sesquioxide alloys exhibit an increase (decrease) of lattice constant with indium (aluminum) incorporation. Using combinatorial epitaxial techniques (Fig. 1), we have determined the phases and their alloy concentration ranges and their dependence on growth parameters. The stress-strain relation of pseudomorphic layers on lattice-mismatched substrates has been modeled by us in the framework of continuum elastic theory for various phases, in particular the monoclinic (β), orthorhombic (κ) and trigonal (corundum) (α) phases [4,5].

The oxide alloy semiconductors exhibit a decrease (increase) of their band gap energy with indium (aluminum) incorporation. We have investigated this effect in detail using spectroscopic

with indium (aluminum) incorporation. s effect in detail using spectroscopic y anisotropic character of the materials (birefringence and dichroism) is discussed in

ellipsometry. The optically anisotropic character of the materials (birefringence and dichroism) is discussed in detail [6]. The consequences for correct evaluation of Raman scattering are pointed out [7]. Also, the band alignment with different dielectrics is discussed.

This work has been done in cooperation with H. von Wenckstern, M. Lorenz, M. Kneiß, D. Splith, A. Hassa, C. Sturm, T. Schultz, N. Koch, M. Albrecht, Ch. Fares, S.J. Pearton, members of the GraFOx consortium and others. Parts of this work have been funded by European Social Fund within the Young Investigator Group "Oxide Heterostructures" (SAB 100310460) and by Deutsche Forschungsgemeinschaft in the framework of Sonderforschungsbereich 762 "Functionality of Oxide Interfaces" (projects A02, B04).

References:

1) H. von Wenckstern, *Group-III Sesquioxides: Growth, Physical Properties and Devices*, Adv. Electr. Mat. **3**, 1600350 (2017).

2) M. Kneiß, MG et al., *Tin-Assisted Heteroepitaxial PLD-growth of* κ -Ga₂O₃ *Thin Films with High Crystalline Quality*, APL Mater. 7, 022516 (2019).

3) V. Gottschalch, MG et al., *Heteroepitaxial growth of* α -, β -, γ - and κ -Ga₂O₃ phases by metalorganic vapor phase epitaxy, J. Cryst. Growth 510, 76 (2019).

4) M. Lorenz, MG et al., Atomically stepped, pseudomorphic, corundum-phase $(Al_{1-x}Ga_x)_2O_3$ thin films ($0 \le x < 0.08$) grown on *R*-plane sapphire, Appl. Phys. Lett. 113(23), 231902 (2018).

5) M. Grundmann, *Elastic Theory of Pseudomorphic Monoclinic and Rhombohedral Heterostructures*, J. Appl. Phys. 124, 185302 (2018).

6) C. Sturm, MG et al., *Dielectric tensor of monoclinic Ga*₂O₃ single crystals in the spectral range 0.5-8.5 eV, APL Mater. 3, 106106 (2015).

7) C. Kranert, MG et al., *Raman Tensor Formalism for Optically Anisotropic Crystals*, Phys. Rev. Lett. 116, 127401 (2016).

First-Principles Material Simulation and Beyond

*Shinji Tsuneyuki^{1,2}

¹ Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, ² Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.

<u>stsune@phys.s.u-tokyo.ac.jp</u>

Keywords: Computer simulation, first-principles calculation, data centric science,

Material simulation based on the first-principles calculation of electronic states aims to explain the physics of materials, to predict material properties, and to create new materials by fully utilizing high-performance computers. In line with the development of computer hardware, novel computational methods and algorithms have been developed for such purposes, and they are opening new doorways in materials science and technology with connecting theories and experiments.

In this presentation, I will give a brief overview of recent advances and remaining problems in the first-principles simulation from the viewpoint of accuracy, system size, dynamics, and exploration. I will show that some of these problems are solvable by a combination of first-principles calculation with modeling and data-centric science approaches.

The first example is the simulation of the thermal properties of crystals, where a precise calculation of the anharmonic phonon effect is necessary. Although the spatiotemporal scale of phonon properties is so diverse, the thermal properties and their temperature dependence can be precisely calculated by a combination of first-principles molecular dynamics and so-called sparse modeling^{1,2}.

The second one is the theoretical exploration of crystal structures. There has been much progress in the methodology of crystal structure prediction for years, and yet it is a severe problem if the number of atoms exceeds \sim 50. Here I will show that crystal structure exploration is efficiently accelerated by the Bayes' theorem with a little help from incomplete powder-diffraction data^{3,4}. The method is helpful for high-pressure materials science.

The third example is the simulation of non-thermal laser ablation by a femtosecond laser pulse. First-principles calculation of a small and idealized system has brought an idea for the mechanism of this complex phenomenon, while model simulations with first-principles parameters have given strong support by comparison with experimental data⁵.

References:

1) T. Tadano and S. Tsuneyuki, Phys. Rev. Lett., 120, 105901-1-6 (2018), and references therein.

- 2) Y. Oba, T. Tadano, R. Akashi and S. Tsuneyuki, Phys. Rev. Materials 3, 033601-1-11 (2019).
- 3) N. Tsujimoto, D. Adachi, R. Akashi, S. Todo, and S. Tsuneyuki, Phys. Rev. Materials 2, 053801 (2018).
- 4) D. Adachi, N. Tsujimoto, R. Akashi, S. Todo, S. Tsuneyuki, Comput. Phys. Commun. 241, 92 (2019).
- 5) Y. Tanaka and S. Tsuneyuki, App. Phys. Exp. 11, 046701 (2018).

High-entropy alloys

*E. P. George^{1,2}

¹ Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6115, USA ² Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996-2100, USA

*<u>georgeep@ornl.gov</u>

Keywords: Structural materials, Mechanical properties, Microstructure, Deformation mechanisms

Conventional alloys consist of a primary element chosen with a primary property in mind (e.g. gold for luster) to which secondary elements are added for other properties (e.g. copper for strength). Recently, however, a novel alloy design strategy has taken the metallurgical world by storm, as summarized in a recent review [1]. It eschews the primary-element approach and, instead, mixes together four, five, or more elements in near-equal amounts. These alloys have high (ideal) entropies of mixing – hence the name. They are scientifically interesting because theories that have been developed for dilute solid solutions break down in concentrated alloys lacking "solvents" or "solutes" in the traditional sense. A handful also exhibit striking mechanical properties (Fig. 1), including strength [2,3], ductility [2,3], and toughness [4,5] that are simultaneously enhanced at cryogenic temperatures, unlike in conventional materials where they have to be

traded off. The multidimensional compositional space occupied by high-entropy alloys remains largely

unexplored. One of the reasons for the current excitement in the field is that many more alloys may be lurking in these regions, just waiting to be discovered. A possible strategy for narrowing down the search area relies on identifying both the physical mechanisms responsible for the superior properties as well as their composition dependence. Such a bottom-up approach allows a more targeted probing of limited areas within the available composition space. In this talk, I will summarize what we have learned about the mechanical properties of this new class of alloys. By focusing on a few model systems, it is possible to gain fundamental mechanistic understanding of certain properties and phenomena. These insights serve as a useful guide to navigate the vast multi-dimensional space that remains to be explored. They also help us develop broadly applicable scientific principles for alloy design.

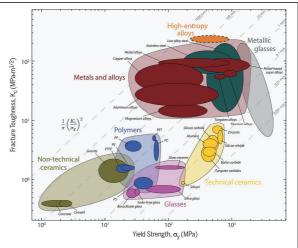


Fig. 1: Strength-toughness map showing the outstanding damage-tolerant properties of highentropy alloys relative to other material classes [4].

References:

[1] E.P. George, D. Raabe, R.O. Ritchie, Nature Reviews Materials 4, 515-534 (2019).

[2] A. Gali, E.P. George, Intermetallics 39, 74-78 (2013).

[3] F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, E.P. George, Acta Mater. 112, 40-52 (2016).

[4] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153-1158 (2014).

[5] B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nature Comm. 7, 10602 (2016).

The Terrawatt Opportunity: new materials paradigms toward sustainability

David Ginley, Kristin Persson², Lauren Garten¹, Praneetha Selvarasu¹, John Perkins¹, Wenhao Sun², Kirill Popov², Shyam Dwaraknath², Gerbrand Ceder², John Mangum³, Brian Gorman³, Laura Schelhas⁴, Michael Toney⁴, Zamyla Chan⁵, Daniel Nocera⁵, James Haggerty⁶, Okan Agirseven⁶, Janet Tate⁶, Daniil Kitchaev⁷, Nancy Haegle¹, William Tumas¹

¹NREL; ²Lawrence Berkeley National Laboratory; ³Colorado School of Mines; ⁴SLAC National Accelerator Laboratory; ⁵Harvard University; ⁶Oregon State University; ⁷Massachusetts Institute of Technology

There is an increasing realization that long term sustainability requires significant societal changes from both in infrastructure and in use patterns. This requires significant restructuring of our overall energy systems including an increasing integration of renewable energy generation with active storage, a minimization of CO2 generating energy technologies and transformations in transportation and buildings. To achieve the kind of penetration of renewable energy needed is both a challenge and an opportunity. Si solar cells are headed toward being the largest business on the planet. To achieve such a large shift in the topology of our energy systems requires new functional materials and just as importantly approaches on how to make them. We can no longer afford the 20 year cycle from discovery to application in a new material or device.

We view the approach as being similar to that shown in the figure, whereby the desired functionality is defined as are the key properties needed for an applications space; such as temperature, chemical environment etc. Computationally this can lead to a definition of a set of potential materials and then upon down selection of appropriate candidates it is possible to computationally examine a number of synthetic pathways including possible substrate and or approaches to nucleation and growth. We will demonstrate this approach with examples of

the targeted synthesis of high energy polymorphs of SrHfO₂ that are piezoelectric (the ground state is not). And by targeted solution synthesis of polymorphs of MnO₂ and TiO₂ with diverse functionality. This new methodology for the realization of new functional and metastable materials is foundational toward developing a sustainable society.

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, as part of the CNMGD Energy Frontier Research Center under contract No. DE- AC36-08GO28308 to NREL.

Garten, L. M., Dwaraknath, S., Walker, J., Mangum, J. S., Ndione, P. F., Park, Y., Beaton, D. A., Gopalan, V., Gorman, B. P., Schelhas, L. T., Toney, M. F., Trolier-McKinstry, S., Persson, K. A., Ginley, D. S., *Adv. Mater*.2018, 30, 1800559. <u>https://doi.org/10.1002/adma.201800559</u>

 Chen, B. R., Sun, W., Kitchaev, D. A., Mangum, J. S., Thampy, V., Garten, L. M., ... Schelhas, L. T. (2018). Understanding crystallization pathways leading to manganese oxide polymorph formation. *Nature communications*, 9(1), 2553. doi:10.1038/s41467-018-04917-y

Dr. David Ginley, Research Fellow/ Chief Scientist Materials and Chemistry Science and Technology NREL 15313 Denver West Pkwy Golden, CO 80401 303-384-6573ph, 303-384-6430 fax 720-375-4240 cell David.ginley@nrel.gov

Magnetic Materials: Innovation and Sustainable Development.

J. M. D. Coey, School of Physics and CRANN, Trinity College Dublin, Ireland.

Magnetic materials are important in a huge range of applications; two principal categories are bulk functional materials and thin films for data recording and electronic devices. An increasing focus on energy efficiency and sustainability is driving a quest for new materials and reshaping how we think about existing solutions. *Soft magnets* are already highly efficient and barring a breakthrough on the Slater Pauling curve, scope for improvement is limited. *Permanent magnets* create a magnetic field in their surrounding space with no continual expenditure of energy. An electromagnet producing 1 Tesla in a volume of 500 cc will consume \$2000 worth of energy over 10 years. A permanent magnet does the same job for free. Although the energy stored is in the magnetic field is only 200 Joules — it in a particularly useful form, providing the basis of highly-efficient energy converters, both electric motors and generators. Demand for rare-earth magnets for new applications, notably electric vehicles and robotics, but also direct-drive wind turbines and microscale energy harvesting, is increasing rapidly from the present base of 100,000 tonnes per annum. The 2011 rare earth crisis focussed attention worldwide on reducing and recycling heavy rare earths.

Regarding archival recording, a focus is on developing media structures compatible with heat-assisted *magnetic recording*. As digital data processing consumes ever-greater quantities of energy the challenge to magnetic or other solutions is to drastically curb the energy requirement to sustain information technology and to advance data rates into the terahertz gap, where chip-based *spin electronics* solutions could be attractive. Finally, there are prospects of magnetic materials based on entirely new principles, that will be discussed briefly.

Cluster Keynotes Ken-1

- A. Fundamentals for Materials
- B. New Trend of Materials Research
- C. Novel Structural Materials Based on New Principles
- **D.** Advanced Electronic Materials
- E. Magnet and Spintronics
- F. Energy
- G. Materials for Smart Systems
- H. Green Technology and Processing
- I. Biopolymers

December 10–13, 2019 – Cluster Keynotes

Ken-1

– December 11, 2019 —

Cluster Session A

Time 16:30-18:30

Chairpersons Shin-ichi ORIMO, Koichi HAYASHI, Taisuke OZAKI

AX-11-CLK01

16:30-17:10

Ions and electrons at interfaces of functional ionic materials Truls NORBY

University of Oslo, Norway

AX-11-CLK02

17:10-17:50

White Neutron Holography – New Probe of Local Atomic Structures around Dopants in J-PARC Kenii OHOYAMA

Ibaraki University, Japan

AX-11-CLK03

17:50-18:30

9:30-10:20

10:20-11:10

Bridging atomic-resolution experiment and computation using machine learning Teruyasu MIZOGUCHI

The University of Tokyo, Japan

- December 12, 2019

Cluster Session B

Time 9:30-12:00

Chairperson Shinji Tsuneyuki

BX-12-CLK01

the Outliere

When the New Science is in the Outliers

Matthias Scheffler Fritz Haber Institute of the Max Planck Society, Germany

BX-12-CLK02

Data driven discovery of new materials

Isao Tanaka Kyoto University, Japan

BX-12-CLK03

11:10-12:00

Geometric frustration and the intrinsic approach in material science

Efi Efrati Weizmann Institute of Science, Israel

- December 13, 2019 -

Cluster Session C

Time 14:00-16:00

Chairpersons Eiji Abe, Junichi Tatami, Kozo Ito

CX-13-CLK01

14:00-14:40

Evolution of LPSO Structure to Mille-Feuille Structure in Ultrahigh-Strength Magnesium Alloys

Yoshihito KAWAMURA Kumamoto University, Japan

CX-13-CLK02

14:40-15:20

Additive Manufacturing of Ceramic Components with Unique Structures

Tatsuki OHJI National Institute of Advanced Industrial Science and Technology, Japan

CX-13-CLK03

15:20-16:00

Detecting bond scission in fracture of soft materials Prof. Costantino Creton

CNRS Research Director, ESPCI, Paris Tech, France

December 12, 2019 -

Cluster Session D

Time 14:00-16:00

Chairpersons Yoshihiro Iwasa, Kenji Shiojima, Susumu Saito

DX-12-CLK01

14:00-14:40

Atomic-level control of high temperature superconductor materials for unveiling their pairing mechanism

Qi-kun XUE Tsinghua University, China

DX-12-CLK02

14:40-15:20

Development of Corundum-Structured Gallium Oxide Power Devices by MIST EPITAXY® Takashi SHINOHE FLOSFIA INC., Japan.

DX-12-CLK03

15:20-16:00

Emergent electromagnetism in quantum materials Naoto NAGAOSA RIKEN and U. Tokyo, Japan

	Cluster Session E	1		
Cluster Session E			Withdrawal	
	Time 9:30-12:05			
Chairpersons	YoshiChika Otani, Jun Sugiyama	1	December 13, 2019 —	
	1		Cluster Session G	
EX-11-CLK01		9:30-10:10	Time 9:30-11:50	
Antiferromagnets for neuromorphics and opto-electronics Tomas Jungwirth University of Nottingham/Institute of Physics, Academy of			Chairperson Tsutomu Miyasaka	
Sciences of t	he Czech Republic, United King	dom	GX-13-CLK01	9:30-10:0
EX-11-CLK02		10:10-10:50	Soft Electronic and Robotic Systems	
Quantum Crit Neutrons & N	icality in Organometallics Stu luons	udied by	Martin Kaltenbrunner Johannes Kepler University Linz, Austria	
Martin Månsson			GX-13-CLK02	10:05-10:4
Royal Institut	e of Technology, Sweden		Design, development, and doping of novel optoelectronic functional materials	inorganic
	Break		Toshio Kamiya	
	10:50-11:05		Tokyo Institute of Technology, Japan	
			GX-13-CLK03	10:40-11:1
EX-11-CLI03		11:05-11:35	Gold Nanorods with Ultranarrow LSPR Ba	nds
Probing antiferromagnets with currents			Luis M. Liz-Marzán	
Vimcent Balt	z niv. Grenoble Alpes / CNRS / CE		CIC biomaGUNE, Spain	
France	IIV. GIEIIODIE AIPES / CINKS / CL	LA / GINF,	GX-13-CLK04	11:15-11:5
			Perovskite Solar Cells: History, Progress a	
EX-11-CLI04		11:35-12:05	NamGyu Park	ind i cropooni
-	ne formation of the iron base died by operando muon spin	-	School of Chemical Engineering, Sungkyunk Korea	wan Universit
Akihiro Koda			December 11, 2010	
KEK IMSS, Japan			December 11, 2019 — Cluster Session H	
	Cluster Session F		Chairpersons Katsuya Teshima, Tetsuya Yama	amoto
	Time 16:30–18:30			14:00-14:3
Chairpersons	Yoshiharu SAKURAI, Atsuo YA Takao MORI	MADA,	HX-11-CLK01 Photocatalytic water splitting for solar hyd	
			production	liogen
FX-12-CLK01		16:30-17:10	Kazunari Domen	
	ectro-ptychography: Visualiz		The University of Tokyo / Shinshu University	/, Japan
heterogeneoi	is oxygen storage behavior ir		HY-11-CI K02	14:30-15:0
catalyst particles		HX-11-CLK02 14:30–15:0 Plasma Synthesis, Conversion, and Processing of		
Yukio TAKAHASHI Osaka University, Japan			Energetic Materials	
Usaka Ullivel	σιτγ, σαματι		Alexander Fridman	
FX-12-CLK02		17:10-17:50	Drexel University, USA	
Quantifying Ir	nactive Lithium in Lithium Me	tal Batteries	HX-11-CLK03	15:00-15:3
Ying Shirley MENG University of California San Diego, USA				10.00 10.0
			Gallia(Ga ₂ O ₃) for Green and Efficient Energ	ny application

HX-11-CLK04

15:30-16:00

Lead-free Piezoelectric Ceramics – Future perspectives – Akira Ando Murata Manufacturing Co., Ltd., Japan

—— December 13, 2019 ———

Cluster Session I

Time 16:30-18:00

Chairpersons Jun Kikuchi, Masaya Yamamoto

IX-13-CLK01

16:30-17:15

Importance of strengthening "venous industry" for future plastics Nobuyuki Kawashima

Mitsui Chemicals, Inc., Japan

IX-13-CLK02

17:15-18:00

Ceramic Additive Manufacturing Technologies for Biomedical applications

Hui-suk Yun Korea Institute of Materials Science, Korea

AX-11-CLK01

Ions and electrons at interfaces of functional ionic materials

^{*}Truls Norby¹

¹Dept. Chemistry, Centre for Materials Science and Nanotechnology, Univ. of Oslo, NO-0318 Oslo, Norway * truls.norby@kjemi.uio.no

Keywords: Grain boundaries; heterointerfaces; surfaces; protons; electrons

The thermodynamics and kinetics of ionic and electronic defects in the bulk of crystalline ionic materials describe well the equilibrium deviation from the perfect structure as well as random and gradient-driven transport. Once heterogeneities like homo- or heterojunctions or surfaces are introduced, defect energies vary spatially, introducing primary equilibrium concentration gradients and charge separation, as well as secondary space charge regions with depletion or enrichment of charge carriers, causing large variations in transport properties. Examples comprise the highly resistive grain boundaries of oxide and proton conducting ceramics, the job-sharing separation of charged ionic defects and electronic species over heterointerfaces, and surface protonic conduction in adsorbed water. In this talk I discuss some of these aspects in further detail.

The high resistance of grain boundaries in acceptor-doped oxide ion and proton conducting ceramics is assigned to depletion of positive charge carrying defects in the space charge layers, caused by the accumulation of the same carriers in the core of the grain boundary for relaxation of lattice mismatch strain. But the positive charge of the core is hard to very directly. We have applied TEM electron holography to a grain boundary in Y-doped BaZrO₃.¹ This yields a phase shift of the electron beam caused by the local charge through the sample. Surprisingly, the grain boundary core appears negative rather than the expected positive. This can to some extent be understood by the loss of Ba²⁺ by out-diffusion to evaporation and formation of surface carbonate, competing with the accumulation of effectively positive oxygen vacancies and protons. But more importantly, the high energy TEM electrons used in holography feel a different local electrical potential – dominated by the spatial function of the positive atomic nuclei - than the comparatively stationary protons – dominated by the orbitals of the negative electron clouds.

As another example, I discuss recent computational results² on the heterointerface between two undoped ionic materials – $BaZrO_3$ and $SrTiO_3$ – showing how different defect formation energies can form charge separation between the two materials close to the interafces, leaving one with effectively positive ionic defects and the other with charge compensating negative defects, e.g. electrons. This may lead to development of for instance mixed ion-electron conducting (MIEC) nanocomposites with charge carriers with high mobilities due to the lack of trapping to heterovalent dopants. The heterointerface effectively induces a doping effect in both materials.

Finally, I discuss new directions in surface protonics. There is growing understanding and parameterisation of the fundamentals of conduction of free protons in chemisorbed and ice-like physisorbed water, and of vehicular protonic species in thicker liquid-like physisorbed water layers at high relative humidities.³ This is caused by charge separation between the surface and the water and has large effects on a range of physicochemical processes e.g. on surfaces of catalysts and in nanoporous ceramics. But recent advances in heterogeneous catalysis enhanced by surface protonic currents on ceramic supports in the presence of dry hydrogen (no water)⁴ requires new insight in dissociation and ionisation of hydrogen on ionic surfaces.

References:

- 1) T. Bondevik et al., submitted (2019).
- 2) S. Saeed et al., submitted (2019).
- 3) S.Ø. Stub, E. Vøllestad, T. Norby, J. Phys. Chem. C, 121 [23] (2017) 12817-12825.
- 4) R. Manabe, S. Okada, R. Inagaki, K. Oshima, S. Ogo, Y. Sekine, Scientific Reports, [6] (2016) 38007.

Truls Norby

Professor, University of Oslo

Truls Norby (b. 1955) has his PhD from the University of Oslo (UiO) 1986, where he studied and worked with late prof. Per Kofstad.

Norby became professor at the Department of Chemistry 1994 and head of the Group for Solid-State Electrochemistry in 1997, now Group for Electrochemistry, which is part of the Centre for Materials Science and Nanotechnology (SMN) at UiO.

Norby works with thermodynamics and transport of defects in materials for solid-state fuel cells, electrolysers, batteries, gas separation membranes, sensors, and metal

protection oxide layers. He specialises in protons in oxides and their use in high temperature proton conductors and hydrogen separation membranes. Recently, he also focuses on topics related to transport in adsorbed layers on surfaces and across interfaces (grain boundaries, electrodes) and on the semiconducting properties of oxides for uses in photoelectrochemistry and thermoelectrics.

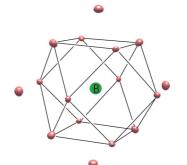
He has published more than 240 journal papers, graduated 80 Master- and PhD-students, and is editor of Solid State Ionics and President of the International Society for Solid State Ionics (ISSE) 2019-2021. He is member of the Norwegian Academy of Science and Letters and other national academies. He has won the UiO Innovation Prize (2012) and the Norwegian Guldberg-Waage medal for chemistry 2018.

He has founded companies NORECS AS (2001) which develops, manufactures, and sells test equipment world-wide (including China) and Protia AS (now CoorsTek Membrane Sciences AS) (2007) which develops energy conversion processes using proton conducting ceramic materials.

AX-11-CLK02

White Neutron Holography – New Probe of Local Atomic Structures around Dopants in J-PARC

*Kenji Ohoyama


Ibaraki Univ., Tokai, Ibaraki 319-1106, Japan

* kenji.ohoyama.vs@vc.ibaraki.ac.jp

Keywords: local atomic structure, light elements, neutron holography, dopants

For most of functional materials, the properties can be controlled by impurity doping. For Si semiconductors, B or P with a concentration of 10^{-5} - 10^{-9} are doped to enhance transportation properties. Thus, the slightly distorted atomic structure around dopants, called "*local structure*", must be important for the functionality. The most powerfull probe for visualisation of local atomic strutures is atomic resolution holography (ARH), which can visualise 3D atomic structures in the rang of ~20 Å from the selected atoms (dopants). ARH has been already established using fluorescent x-rays, and photoelectrons.

However, light elements, such as H, Li or B, which are important for novel functional materials, cannot be observed by x-rays and electrons. To overcome this, neutron ARH, which have higher sensitibity to light elements, was proposed and developed by Cser et al. and Sur *et al.* in 2001 using a monochromatic beam¹⁾. Recently, our group has succeeded in enhacing accuracy of atomic images drastically by using white neutrons in Japan Proton Accelerator Research Complex (J-PARC) at Tokai, Japan²⁾. Note that we can obtain data (holograms) with at most 130 wavelengths in the range of 0.36 - 6.5 Å at once; this is the essential point of the high accuracy. We successfully visualsed local atomic structures around Eu in 1% Eu doped CaF₂, which is a typical scintillation crystal, and found that there exist excess F⁻ around Eu³⁺ dopants. We also succeeded in visualising local atomic structures in many materials: the semiconductor 0.26% B doped Si³, the thermoelectric material 0.75% B doped Mg₂Si, the typical strongly correlated electrons system 2% Sm doped RB₆ (R:

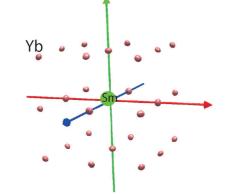


Fig. 2. Local structures of Yb around Sm (green) in 2% Sm doped $Yb^{11}B_6.~$ The distance between Yb is 4.16 Å

Yb, La), and so on. Fig.1 shows local structure around ¹⁰B (green) in 0.27 % ¹⁰B doped Si obtained by white neutron ARH in J-PARC ³⁾. The Si structure around doped ¹⁰B is the diamond structure, directly indicating that most of ¹⁰B is located at Si positions. This indicats that the positions of light dopants can be determinded by this method. Fig.2 shows atomic images of Yb around Sm (green) in 2% Sm doped Yb¹¹B₆ (space group:Pm-3m, a = 4.16 Å). We also visualised B cages around rare earth atoms. At least 7th nearest neighbour Yb located at 12.5 Å from Sm was visualised, which is much longer than the typical range of x-ray absorption fine structure method. Thus, one can observe change of doping effects to the atomic structures of light and heavy elements in the large area from the area around dopants to the area which has the non-distorted structure without doping effects.

By using the white neutron ARH, one can discuss doping effects (leattice distortions and/or fluctuations) by light element doping, such as B, or positions of light dopants, as well as local atomic structures of light elements around dopants. Thus, this technique is important to clarify the origins of properties in doped materials from a view point of structural physics.

References

- 1) L. Cser et al., Europhys. Lett. 54, 747 (2001), B. Sur et al. Nature 414, 525 (2001).
- 2) K. Hayashi et al., Science Advances, **3**, e1700294 (2017).
- 3) K. Ohoyama and K. Hayashi, Phys. Status Solidi B, 255, 1800143 (20180).

Kenji Ohoyama was born in Tokyo, Japan in 1961. He obtained his B.Sc.(1986) and M.Sc. (1988) degrees from Tohoku University, and Ph.D. from Tohoku University in 1992. He worked in Institute for Materials Reserch of Tohoku University as a research associate (1992–2003), associate professor (2003–2013), and as an associate professor in Advanced Institute for Materials Research of Tohoku University (2013-2015). He moved to Ibaraki University as a full professor in 2015. His main research fields are investigations of materials science and magnetism in strongly correlated electron systems using neutron scattering, and developing novel techquives of neutron scattering.

AX-11-CLK03

Bridging atomic-resolution experiment and computation using machine learning

*Teruyasu Mizoguchi¹, Shin Kiyohara¹, and Tomohiro Miyata^{1,2}

¹Institute of Industrial Science, University of Tokyo, Tokyo, 153-58505, Japan

² Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Sendai, Japan

*<u>teru@iis.u-tokyo.ac.jp</u>

Keywords: Machine learning, spectroscopy, ELNES/XANES, first principles simulation, STEM

A combination between the experimental and computational investigations are crucial for the modern materials developments. In particular, an atomic scale investigation becomes more important for the recent down-sizing of the electric devices. On the other hand, one has to know that the "observation" is not identical to the "understanding".

In recent years, machine learning approaches have widely spread in materials science to predict material properties quantitiely and overcome various obstacles with extensive computations. The machine learning was also applied to investigate lattice defects, such as grain boundary, and spectroscopic data, such as infrared (IR), nuclear magnetic resonance (NMR), ELNES/XANES, and extended X-ray absorption fine structure (EXAFS) to extract hidden information.

We are applying the machine learning method to build the bridge between the atomic resolution experiments and computations. In this presentation, I am going to present about following topics. 1) Atomic resolution analysis of liquid, 2) machine learning for ELNES/XANES. The respective contents are as blow:

1) Atomic resolution analysis using aberration-corrected STEM-EELS has been mainly applied to crystalline materials. On the other hand, its applications to liquid and gas have been limited. Recently, we are performing the atomic resolution analysis of ionic liquid [1-3] and investigation of the dynamic behavior of the gaseous molecule [4].

Ionic Liquids have characteristic properties, such as non-volatility, high ionic density, and hydrophilicity. Owing to such properties, ionic liquids have been studied for the wide range of applications. Atomic resolution observation of a gold doped ionic liquid was conducted by STEM-EELS. TEM specimen for the ionic liquid was fabricated using the simple method [1], and gold atoms were clearly observed as bright spots. originating We also observed the dynamics of monatomic ions in ionic liquids [2]. Quantitative molecular and ionic mapping in the ionic liquid was also achieved [3].

2) To develop a method that can interpret the ELNES/XANES spectra, hierarchical tree and decision tree methods are combined. First, ELNES/XANES database was constructed by the theoretical calculation. Then, hierarchical clustering was performed on the database, resulting in categorizing similar spectra into clusters. Spectral similarity was measured by cosine distance. Cutting the hierarchical tree at arbitrary threshold makes some clusters of the spectra. We successively lowered the cutting threshold to each branch point, resulting in making two clusters at every branch point. By using the branch point in the cluster as the teacher, the decision tree on the materials information was constructed by the supervised learning. We have confirmed that this method can correctly interpret the spectra [5].

In addition to the "interpret" the spectrum, the machine learning method was also applied to directly predict the materials structure and functions [6].

References

1) T. Miyata et al., Ultramicroscopy, 178 (2017) 81-87.

- 2) T. Miyata et al., Science Advances, 3 (2017) e1701546-1-5
- 3) Y. Sugimori et al., RSC Advances, 9 (2019) 10520-10527.
- 4) Y. Katsukura et al., Scientific Reports, 7 (2017), 16434-1-9.
- 5) S. Kiyohara et al., Scientific Reports, 8 (2018) 13548-1-12
- 6) S. Kiyohara et al., J. Phys.: Materials, 2 (2019) 024003-1-9

Teruyasu Mizoguchi is a professor in Institute of Industrial Science, The University of Tokyo. He received PhD from Kyoto University in 2002. From 2002~2005, he has been a postdoctoral researcher at Kyoto University, The University of Tokyo, and Lawrence Berkeley National Laboratory. He became a research assistant in Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo in 2005 and an assistant professor in 2007. He moved to Institute of Industrial Science, The University of Tokyo in December 2009, as an associate professor and became a professor in January 2019. His research interest is investigating structure-property relationships of materials using atomic resolution electron microscopy and spectroscopy (STEM-EELS), first principles simulations, and machine learning.

BX-12-CLK01

When the New Science is in the Outliers

Matthias Scheffler^{1,2,}

¹ Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany

² IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany

*<u>Scheffler@fhi-berlin.mpg.de</u>

Keywords: Big data, artificial intelligence, machine learning, compressed sensing, domain of applicability, materials science

Several issues hamper progress in data-driven materials science. In particular, these are a missing FAIR [1] data infrastructure and appropriate data-analytics methodology [2].

Significant efforts are still necessary to fully realize the A (accessibility) and I (interoperability) of FAIR. Here the development of metadata, their intricate relationships, and data ontology need more attention. Obviously, a FAIR data infrastructure – for being accepted by the community – should work without bureaucratic hurdles or the needs for special training. In this talk, I will discuss the challenges and progress, focusing on computational materials science.

Concerning the data-analytics, we note that the number of possible materials is practically infinite, but only 10 or 100 of them may be relevant for a certain science or engineering purpose. In simple words, in materials science and engineering, we are often looking for "needles in a hay stack". Fitting or machine-learning all data (i.e. the hay) with a single, global model may average away the specialties of the interesting minority (i.e. the needles). I will discuss methods that identify statistically-exceptional subgroups in a large amount of data, and I will discuss how one can estimate the domains of applicability of machine-learning models.[3]

1) FAIR stands for Findable, Accessible, Interoperable and Re-usable. The FAIR Data Principles; https://www.force11.org/group/fairgroup/fairprinciples

2) C. Draxl and M. Scheffler, Big-Data-Driven Materials Science and its FAIR Data Infrastructure. Plenary Chapter in Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer (2019). https://arxiv.org/ftp/arxiv/papers/1904/1904.05859.pdf

3) Ch. Sutton, M. Boley, L. M. Ghiringhelli, M. Rupp, J. Vreeken, M. Scheffler, Domains of Applicability of Machine-Learning Models for Novel Materials Discovery, to be published.

Prof. Dr. Matthias Scheffler

Director at the Fritz Haber Institute (FHI) of the Max Planck Society (MPG), Berlin, Germany

Homepage: www.fhi-berlin.mpg.de/th/

Matthias Scheffler is known for his pioneering work linking density-functional theory with thermodynamics and statistical mechanics. Currently he leads the pan-European NOMAD project (Novel Materials Discovery)¹, which is a European Centre of

Excellence that provides a central, FAIR data Repository and Archive for materials modelling. He is also pioneering in the field of big data analytics for the advancement of materials design and engineering.

Matthias Scheffler obtained his PhD in Physics from the Technical University Berlin, Germany (1978), and was then scientific staff member at the Physikalisch-Technische Bundesanstalt in Braunschweig (1978-1987). In 1979/80 he spent a year at IBM Yorktown Heights. In 1988, he became founding director of the Theory Department of the Fritz Haber Institute, where he has been since then. He is honorary professor at all three universities of Berlin and "Distinguished Visiting Professor for Materials Science and Engineering" at the University of California, Santa Barbara.

Honors and Awards (selection)

1998	Fellow of The American Physical Society
2001	Max Planck Research Award, jointly awarded by the Alexander von Humboldt
	Foundation and the MPG
2003	Medard W. Welch Medal and Prize, awarded by the AVS: Science and Technology of
	Materials, Interfaces, and Processing (formerly American Vacuum Society)
2004	Max-Born-Medal and Prize, jointly awarded by British Institute of Physics (IOP, GB)
	and the German Physical Society (DPG, DE)
2004-2012	Visiting Professor at the Dalian Institute of Chemical Physics of CAS
2007	Honorary doctorate, Faculty of Science at Lunds University, Sweden
2008	Ernst Mach Honorary Medal for Merit in the Physical Sciences, Academy of Sciences
	of the Czech Republic
2010	Rudolf Jaeckel Prize of the German Vacuum Society (DVG, DE)
Since 2016	Visiting Professor at the Institute for Catalysis, Hokkaido University, Japan
2017	Advanced Grant of the European Research Council
2017	Member of Leopoldina (German Academy of Sciences)

Synergistic Activities (selection)

- Organizer and co-organizer of numerous conferences, workshops, summer schools (about 5 per year).
- Member of the CECAM council, member of the board of directors of the node CECAM-DE-MM1P, Member of the board of trustees of psi-k, member of several scientific advisory boards.
- The computer code FHI-aims² is developed by Scheffler and his department.
- Initiator and coordinator of BiGmax³, a Max Planck research network for Big-Data Driven Materials Science.
- Initiator, founder, and chairperson of the board of the association: *FAIR Data Infrastructure for Physics, Chemistry, Materials Science, and Astronomy e.V*⁴.

¹ <u>https://nomad-coe.eu/</u> ² <u>https://aimsclub.fhi-berlin.mpg.de/</u> ³ <u>https://bigmax.iwww.mpg.de/</u>

⁴ <u>http://www.fairdi.eu/</u>

BX-12-CLK02

Data driven discovery of new materials

Isao Tanaka

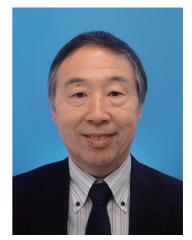
Dept. Mater. Sci. Engrg, Kyoto University, Kyoto, 606-8501, Japan, ESISM, Kyoto University, Kyoto 606-8501, Japan, MI²I, NIMS, Tsukuba 305-0047, Japan, NRL, JFCC, Nagoya 456-8587, Japan tanaka@cms mtl kyota u ac in

tanaka@cms.mtl.kyoto-u.ac.jp

Keywords: materials informatics, first principles calculations, phonon anharmonicity, recommender system, chemically relevant compositions

Recently, challenges for accelerated discovery of materials with the aid of data centric science have been well demonstrated. One of the approaches uses materials database that is generated by first principles density functional theory (DFT) calculations. Thanks to recent progress of computational power and technique, a large number of DFT calculations can be made with the accuracy comparable to experiments, which can be used for high throughput screening. Another approach uses machine-learning technique for making a model to estimate the target property. The whole library can then be screened. Verification process is generally required to examine the predictive power of the model. Models and the quality of the screening can be improved iteratively through Bayesian optimization process. The approach is useful when screening based upon the DFT data is not practical, i.e. when the computational cost for the descriptors is too high to cover the whole library within the practical time frame. This is the same if one needs to explore too large space to cover exhaustively. As an example of the use of a machine learning model to screen a library, I will talk about the story on the discovery of new low lattice thermal conductivity (LTC) crystals [1]. We have established our own LTC dataset computed by the first principles anharmonic force constant method [2]. Using approximately 100 theoretical LTC data, we made a machine learning model for LTC. Then all compounds registered in the inorganic crystal structure database (ICSD) library were ranked with respect to the predicted LTC. Finally, the candidates of the low LTC compounds were validated by first principles LTC calculations. A variety of compounds showing ultra-low LTC of approximately 0.1 Wm/K at 300 K were thereby discovered.

In the second part of my talk, I will explain matrix- and tensor-based recommender system using information of compounds registered in ICSD. It was found to be very powerful for discovery of currently unknown chemically relevant compositions (CRCs) of inorganic compounds from vast candidates [3]. The discovery rate was evaluated by the presence of highly-rated chemical compositions in the other databases of experimentally known compounds, i.e., ICDD-PDF and Springer Materials, excluding CRCs registered in ICSD. For ternary and quaternary compositions, the rate was approximately 60% and 50% for the top 100 compositions, respectively. The high discovery rate with neither DFT database nor other prior physical/chemical knowledge should be noteworthy.


References:

1) A. Seko, A. Togo, et al. Phys. Rev. Lett. 115, 205901 (2015).

2) A. Togo, phono3py: https://atztogo.github.io/phono3py/

3) A. Seko, H. Hayashi, H. Kashima, and I. Tanaka, Phys. Rev. Mater. 2, 013805 (2018).

Isao TANAKA is Professor in the Department of Materials Science and Engineering, Kyoto University, Japan. Trained as a metal physicist, he received his B.E. and M.E. from Kyoto University and his Ph.D. from Osaka University. In 1987, he joined ISIR, Osaka University, as an assistant professor where he studied processing and characterization of high purity silicon nitride. He got an Alexander von Humboldt Fellowship in 1992 and stayed a year in Manfred Rühle's research group of Max Planck Institute for Metals Research in Stuttgart, Germany, where he studied intergranular glassy films of silicon nitride ceramics. He returned to Kyoto University in 1993 and started to use quantum mechanical calculations and combined them with experimental techniques such as ELNES and XANES to study fundamental issues in a wide range of ceramic materials. He also studied electronic processes of defects, impurities, grain boundaries, surfaces, and their roles in macroscopic properties. In 2000s he made pioneering studies on theoretical calculation of thermo-physical properties of ceramic materials through first

principles phonon calculations. Recently he is actively working on data-centric or informatics approach for discovery of new materials. Materials of his current interests are quite diverse including solid-state ionics, battery materials, oxide/nitride semiconductors, engineering ceramics, etc. He is author or coauthor of 411 papers and holds *h*-index of 56. Recently he edited a book titled Nanoinformatics (Springer).

BX-12-CLK03

Geometric frustration and the intrinsic approach in material science

*<u>Efi Efrati¹</u>

¹Weizmann Institute of Science, Rehovot, 76100, Israel,

*<u>efi.efrati@Weizmann.ac.il</u>

Keywords: elasticity, geometric frustration, residual stress, incompatibility.

Unlike Lego bricks that perfectly assemble next to one another, in many molecular assemblies and modern applications of responsive materials some misfit is almost always present. The constituents of such structures must distort in order to fit next to one another resulting in geometrically frustrated structures that possess no stress-free rest state. The elastic behavior of such structures is thus best described through local intrinsic geometric quantities such as their metric.

In this talk, I will survey how the intrinsic approach is implemented to describe frustrated thin sheets known as non-Euclidean plates, twisted molecular crystals, and two-dimensional liquid crystals. The intrinsic approach predicts the striking variety of morphologies of ground states and exotic response properties such structures exhibit, and moreover allows to better engineer self-shaping responsive structures.

Efi Efrati Curriculum Vitae

Contacts efi.efrati@weizmann.ac.il Department of physics of complex systems Weizmann Institute of Science PO Box 26, Rehovot 76100 Israel

Academic employment and education

2014-present	Assistant professor, Weizmann institute of Science.
2010-2014	Simons Postdoctoral fellow, James Franck Institute,
	The university of Chicago.
2005-2010	Ph.D, Racah Institute of Physics, The Hebrew University Jerusalem.
	Summa cum laude.
2003-2005	M.Sc, Racah Institute of Physics, The Hebrew University Jerusalem.
2001-2003	B.Sc. Physics and Mathematics, The Hebrew University of Jerusalem.
	Magna cum laude.

Fellowships and awards

Incumbent of the Ernst and Kaethe Ascher Career Development Chair.
Alon Fellowships for Outstanding Young Researchers.
Compton lectureship, University of Chicago.
The Hebrew University Max Schlomiuk award for outstanding PhD thesis.
Simons post-doctoral fellowship.
Rothschild post-doctoral fellowship (declined).
Giulio Racah prize for theoretical physics (M.Sc)

CX-13-CLK01

Evolution of LPSO Structure to Mille-Feuille Structure in Ultrahigh-Strength Magnesium Alloys

*Yoshihito Kawamura¹

¹Magnesium Research Center (MRC), Kumamoto University, Kumamoto, 860-8555, Japan *<u>rivervil@gpo.kumamoto-u.ac.jp</u>

Keywords: Magnesium, LPSO structure, Kink Strengthening, Mille-feuille structure, Structural materials

Mg alloys are attractive for use in aircraft components primarily because of their low density and high specific strength. But current commercial Mg alloys, e.g., AZ31, have low yield strength and unacceptably low ignition temperature. Moreover, several years ago America's FAA (Federal Aviation Administration) has lifted the ban on the use of some Mg alloy forms in the payload area and has set up a standardized testing method of flammability for Mg alloys¹. In addition, biodegradable tailored Mg alloys are some of the most promising scaffolds for cardiovascular stents.

Ultrahigh-strength Mg-M-RE (M is Co, Ni, Cu or Zn, and RE is Y, Gd, Tb, Dy, Ho, Er or Tm) alloys with high heat-resistance and great flame-resistance have been developed at Kumamoto University in Japan and are now a world leading focus of Mg R&D²⁾³⁾. These Mg-M-RE alloys, which are composed of alpha Mg phase and LPSO phase having a long-period stacking ordered (LPSO) structure, are called LPSO-type Mg alloys because their main strengthening phase is the LPSO phase⁴). The LPSO phase is strengthened by kinking, which is a new concept for strengthening mechanism of metals. The LPSO-type Mg-M-RE alloys, which were produced by hot extrusion of cast ingot, exhibited very high symmetrical yield strength in both tension and compression, high heat resistance, and great flame resistance. A small amount addition of Al and La improved the corrosion resistance, resulting in the same as the commercial AZ31 alloy. Moreover, the ignition temperature was improved by a small amount addition of Be, Yb or Ca, resulting in high ignition temperature above 1200 K. A rapidly solidified powder metallurgy (RS P/M) method, where rapidly solidified powder or ribbons are consolidated by hot extrusion, improved the mechanical and corrosion properties as compared with ordinary ingot metallurgy (I/M) method, where cast ingot is hot extruded. The development of more sustainable and more affordable manufacturing technology for these next-generation Mg alloys has been conducted via an integrated and comprehensive collaboration between academia and industry. Moreover, the applications and commercialization of these advanced Mg alloys have been under serious investigation and study for automobile, aircraft, and biomedical industries. In the LPSO structure, $L1_2$ -type M₆RE₈ cluster layer with 4 atomic planes and Mg layer with 1~4 atomic planes are orderly stacked. The former L1₂-cluster layer is hard and the later Mg

layer is soft; thus resulting in an ordered stacking structure of hard and soft layers within the LPSO structure. We have, therefore, named these kinds of stacking structure of hard and soft layers "mille-feuille structure" after mille-feuille pastry having a stacking structure of pie and cream layers. Recently, we have discovered a new class of magnesium alloys with this kind of mille-feuille structure, in which stacking faults, composing of a single layer of L1₂-cluster, are sparsely distributed in alpha-Mg matrix. The new magnesium alloys were strengthened by kinking as well as LPSO phase, and they exhibited a greater mechanical strength than the LPSO-type Mg alloys. In my presentation, I will report the features of the performances and microstructure of the LPSO-type Mg alloys and introduce the new discovery of the mille-feuille structure.

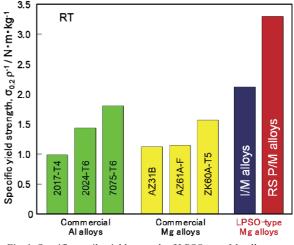


Fig. 1. Specific tensile yield strength of LPSO-type Mg alloys produced by I/M and RS P/M methods.

Refences:

- 1) T.R. Marker, DOT/FAA/AR-11/3.
- 2) Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto, Mater. Trans. 42 (2001) 1172-1176.
- 3) Y. Kawamura and S. Yoshimoto, Magnesium Technology 2005 (TMS, 2005, pp499-502).
- 4) E. Abe, Y. Kawamura, K. Hayashi and A. Inoue, Acta Materialia 50 (2002) 3845-3857.

Yoshihito Kawamura (ph.D)

Date of birth: August 20,1960 Nationality: Japan

Director, Magnesium Research Center, Kumamoto University Kuro-kami 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan

Biosketch:

Director, Magnesium Research Center, Kumamoto University
Professor, Graduate School of Science and Technology, Kumamoto
University
Associate Professor, Graduate School of Science and Technology, Kumamoto
University
Associate Professor, Institute for Materials Research, Tohoku University
Associate Researcher, Institute for Materials Research, Tohoku University
Researcher, R&D Department, Nippondenso Co., Ltd

Mar. 1993	Doctor of Engineering, Tohoku University (ph. D)
Mar. 1985	Master of Engineering, Nagoya University
Mar. 1983	Bachelor of Engineering, Nagoya University

Major Awards

The Medal of Honor with Purple Ribbon, Cabinet office of Japan (2017) The JIM Distinguished Contribution Award, Japan Institute of Metals and Materials (2015) The "HONDA" Frontier Award, The Honda Memorial Foundation (2013) The "NISTEP" Award (The Researchers with Nice Step), MEXT (2012) The "SOKEIZAI" Industry Technology Award, Sokeizai Center (2009) The "MONOZUKURI RENKEI" Award, The Nikkan Kogyo Shinbun Ltd. (2008) The JIM Meritorious Award, Japan Institute of Metals and Materials (2000)

Other Academic and Professional Activities

Science Council of Japan (Member, 2014-to date)

The Japan Institute of Metals and Materials (Director, 2012-2014)

The Japan Institute of Light Metals (Director, 2015-2018)

The Japan Magnesium Association (Director, 2017-to date)

The Kyushu Magnesium Network (President, 2004-to date)

MEXT "KAKENHI" Program of Grant-in-Aid for Scientific Research on Innovative Areas, "Materials Science of Synchronized LPSO Structure" (Project leader, 2011-2016) JST "CREATE" Program (Project leader, 2008-2011)

Publications:

Published papers: 306 (from SCOPUS) Citation: 12,166 (from SCOPUS) h-index: 59 (from SCOPUS)

CX-13-CLK02

Additive Manufacturing of Ceramic Components with Unique Structures

*Tatsuki Ohji

National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan *t-ohji@aist.go.jp

Keywords: Additive manufacturing, Ceramics, Components, Powder

Aiming for innovative ceramic manufacturing technologies which enable creative and novel products, a national R&D project "High-Value Added Ceramic Products Manufacturing Technologies (HCMT)" has been initiated since 2014 with 5-year scheme (2014-19) as a part of SIP "Innovative design/manufacturing technologies" program in Japan. The project deals with two key technologies: additive manufacturing (AM) for realizing complex-shaped ceramic products and reducing their lead-times, and hybrid coating on 3D bodies for enhancing their functionality and durability. Following an overview of this project and a brief description on the general status of AM technologies, this talk focuses on the R&D strategies and the final achievements on AM of ceramics in this project. Among a variety of AM approaches, we have employed two AM technologies for making ceramic green bodies; powder layer manufacturing (powder bed fusion or indirect selective laser sintering) and slurry layer manufacturing (vat photo-polymerization or stereolithography), because of their dimensional accuracy, shape-flexibility, density-adjustability, etc. The former is a dry forming process, and is suitable for large/porous components, while the latter is a wet one, being good for small/dense parts. In addition, intensive research efforts have been devoted to ceramic laser sintering (direct selective laser sintering) which enables concurrent forming and sintering (saving post-sintering-process). This paper describes several 3D prototype models produced for various application targets using the developed AM technologies, which have unique and complicated structures never attainable with conventional methods. The current issues and future perspective for AM of ceramics will be addressed and discussed as well.

This work was conducted as a part of "High-value added ceramic products manufacturing technologies project" supported by CSTI, SIP, "Innovative design/manufacturing technologies (managed by NEDO)".

Tatsuki Ohji is a Fellow of National Institute of Advanced Industrial Science and Technology (AIST), Japan. BS and MS in mechanical engineering from Nagoya Institute of Technology and Ph. D. in inorganic materials engineering from Tokyo Institute of Technology, he has authored or coauthored more than 350 peer-reviewed papers and 20 book chapters, edited more than 40 books and conference volumes, and chaired or co-chaired more than 40 international conferences and symposia. His research interests include mechanical property characterization of ceramics, ceramic composites and porous materials, microstructural design of ceramic materials for better performance, structural control of meso/ macro porous ceramics, and green manufacturing of ceramic components. Fellow of the American Association for the Advancement of Science (AAAS), The American Ceramic Society, ASM International, the Ceramic Society of Japan, and the European Ceramic Society and Academician of the World Academy of Ceramics, he has received numerous awards including John Jeppson Award, Samuel Geijsbeek PACRIM International Award, and ECD Bridge Building Award all from The American Ceramic Society, Academic Achievement Award from the Ceramic Society of Japan, IIM Lectureship Award from ASM International, Honour Medal of Aurel Stodola from the Slovak Academy of Science, Lee Hsun Lecture Award from Chinese Academy of Sciences, and Distinguished Research Achievement Award from the Japan Society of Powder and Powder Metallurgy. He currently serves as President of the American Ceramic Society and an Editor of "Journal of the American Ceramic Society" and "Ceramic International" in addition to an editorial board member of many international journals.

CX-13-CLK03

Detecting bond scission in fracture of soft materials

Juliette Slootman^{,a}, Josh Yeh^a Robert Goestl^c and Costantino Creton^{a,,b}

^{*a*} Laboratoire SIMM, ESPCI Paris, CNRS, PSL University, Paris, France. ^b Global Station for Soft Matter, University of Hokkaido, Japan. ^c DWI - Leibniz-Institut für Interaktive Materialien, RWTH Aachen, Germany

Fracture of soft materials is a complex process coupling non linear mechanics and statistical physics¹⁻². Because of the large deformations involved before a crack propagates, molecular damage typically occurs in the bulk of the material and not only in the fracture plane³. This is particularly true for tough soft materials where bulk energy dissipation mechanisms such as sacrificial bonds are introduced by design. Until recently the detection of damage ahead of a crack was limited to the detection of crystallization or cavitation, detectable by wide or small angle X-ray scattering or optical visualisation, but molecular bond scission was not directly detectable. However organic chemists have now developed several molecules that respond to applied forces or bond scission by changing their light absorption or emission properties⁴⁻⁶ providing novel opportunities for materials scientists to gain insight in molecular processes occurring during mechanical loading.

We have incorporated mechanosensitive fluorophore molecules⁴ as crosslinkers in model transparent elastomers and studied how these bonds break during macroscopic fracture. Pi-extended anthracene based molecules can be used to obtain high resolution spatial information and the extent of damage can be quantified with suitable calibration samples. We will focus in this talk on the strain rate and temperature dependence of the molecular bond scission in simple networks and demonstrate how the extent of molecular irreversible damage during fracture is highly dependent on the viscoelastic effects.

References

1. Creton, C.; Ciccotti, M., Fracture and Adhesion of Soft Materials: a review. *Rep Prog Phys* **2016**, *79* (4), 046601.

2. Creton, C., 50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. *Macromolecules* **2017**, *50* (21), 8297-8316.

3. Ducrot, E.; Chen, Y.; Bulters, M.; Sijbesma, R. P.; Creton, C., Toughening Elastomers with Sacrificial Bonds and Watching them Break. *Science* **2014**, *344* (6180), 186-189.

4. Gostl, R.; Sijbesma, R. P., [small pi]-extended anthracenes as sensitive probes for mechanical stress. *Chemical Science* **2016**, *7* (1), 370-375.

5. Chen, Y.; Spiering, A. J. H.; KarthikeyanS; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P., Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. *Nature Chemistry* **2012**, *4* (7), 559-562.

6. Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R., Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. *Nature* **2009**, *459* (7243), 68-72.

CV Costantino Creton

Dean of Research of <u>ESPCI Paris</u> CNRS Directeur de Recherche at <u>Laboratory of Soft Matter Science and Engineering</u>, Distinguished Professor at University of Hokkaido Scientific Chair of Dutch Polymer Institute **E-mail**: <u>Costantino.creton@espci.fr</u> **Web** : <u>http://ccreton.simm.espci.fr/</u>

Research interests:

mechanical properties of elastomers, deformation, adhesion and fracture of soft polymer networks. mechanochemistry; mechanical properties of hydrogels.

Biographic description:

Costantino Creton graduated in Materials Science from the <u>Ecole Polytechnique Fédérale de Lausanne</u> (Switzerland) in 1985. He then moved on to the <u>Materials Science and Engineering Department of Cornell</u> <u>University</u> (USA) where he obtained his Ph.D in 1991. After a post-doc at the <u>IBM Almaden Research Center</u> (USA), he joined the <u>ESPCI Paris</u> first as a post-doctoral associate in 1993 and, since 1994 as a C.N.R.S. permanent researcher. He was promoted CNRS research director (equivalent to Professor) in 2001 in the <u>Laboratory of Soft Matter Science and Engineering</u>. Since 2019 he is the Dean of Research of the ESPCI Paris

He also holds since 2011 the position of scientific director of the <u>ESPCI Paris</u>, scientific chairman of the <u>Performance Polymers technology area of the Dutch Polymer Institute</u> and has been appointed in 2016, Distinguished Professor at the <u>Global Station for Soft Matter</u> of <u>Hokkaido University</u>.

He has published more than 180 articles in peer-reviewed journals, nine book chapters and has given more than 110 invited and plenary lectures at international conferences. He has received several prizes and awards including the <u>Wake Medal</u> from the UK Society of Adhesion and Adhesives in 2011 and the Adhesion Society's <u>prize for Excellence in Adhesion Science</u> in 2013. He was also elected in 2013 <u>fellow of the American Physical Society</u> and received an ERC Advanced Grant in 2016 to work on fracture of soft materials.

DX-12-CLK01

Atomic-level control of high temperature superconductor materials for unveiling their pairing mechanism

Qi-Kun XUE

Tsinghua University and Beijing Academy of Quantum Information Sciences, Beijing, China **Email:** <u>gkxue@mail.tsinghua.edu.cn</u>

Keywords: superconductors, molecular beam epitaxy, scanning tunneling microscopy

We investigate the pairing mechanism of high Tc superconductivity in cuprates and ironpnictides by using state-of-the-art molecular beam epitaxy (MBE)-scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy and Josephson tunneling experiment. By MBE growth, we are able to prepare superconducting CuO_2 planes in BSCCO and LSCO and FeSe planes in Fe-based pinictides, which provides an unprecedented opportunity to investigate the pairing mechanism in well-controlled manner. We show that the pairing symmetry in both systems is rather conventional. We propose a model for understanding the complicated phase diagram and mechanism of unconventional high temperature superconductivity in the two systems.

Prof. Qi-Kun Xue 薛其坤

Department of Physics, Tsinghua University, B409, New Science Building

Email: <u>qkxue@mail.tsinghua.edu.cn</u>

Phone: +86 10 62795618

Education

1994 Institute of Physics, Chinese Academy of Sciences (CAS), Ph.D in physics.

Employment

2017 - present Director, Beijing Academy of Quantum Information Sciences.

2013 - present Vice President for Research, Tsinghua University.

2013 – 2014 Dean, Office of Scientifc Research and Development, Tsinghua University.

2011 - present Director, State Key Laboratory of Low-Dimensional Quantum Physics.

2010 – 2013 Chair, Department of Physics, Tsinghua University.

2010 – 2013 Dean, School of Sciences, Tsinghua University.

2005 - present Distinguished Professor, Department of Physics, Tsinghua University.1999 -

2005 Director, State Key Laboratory for Surface Physics, Institute of Physics, CAS.

1999 – 2007 Professor, Head of Group SF04, State Key Laboratory for Surface Physics,

Institute of Physics, CAS.

1994 – 1999 Research Associate, Institute for Materials Research, Tohoku University.

Honors

- 2016 Future Science Prize-Physical Science Prize
- 2014 Asian Union of Magnetics Societies Award.
- 2014 HLHL Achievement Award in Science and Technology.
- 2014 Qiu Shi Outstanding Scientist Award.
- 2013 Distinguished Talent of 10000 Talents (Wanren) Program.
- 2012 Tan Kah Kee Science Award in Mathematic and Physical Sciences.
- 2011 National Natural Science Award (Second-class) of China.
- 2011 Qiu Shi Outstanding Scienti c Research Team Award.
- 2010 TWAS Physics prize.
- 2006 HLHL Advancement Award in Science and Technology.
- 2005 Member of the Chinese Academy of Sciences.
- 2005 Cheung Kong Distinguished Professor, Ministry of Education.
- 2005 Outstanding Achievement Award in Science and Technology, CAS.
- 2004 National Natural Science Award (Second-class) of China.
- 2004 Young Scientist Prize, the Chinese Association of Science and Technology.
- 1998 100 Talents Program, the Chinese Academy of Sciences.
- 1997 Young Scientist Fund, National Natural Science Foundation of China.
- 1994 President Prize for Excellent PhD Students, CAS.

DX-12-CLK02

Development of Corundum-Structured Gallium Oxide Power Devices by MIST EPITAXY[®]

*T. Shinohe

FLOSFIA Inc., Kyoto, 615-8245, Japan *<u>shinohe@flosfia.com</u> Keywords: Power device, Ga₂O₃, MIST EPITAXY[®], corundum family, SBD, MOSFET

For several decades the power electronics industry has relied on Si semiconductor devices. However, the physical limitations of Si have triggered the development of wide bandgap semiconductors, including SiC (Eg = 3.3 eV) and GaN (Eg = 3.4 eV). On the other hand, it is reported that corundum-structured Ga₂O₃ (α -Ga₂O₃) (Eg = 5.3 eV), which is one of the metastable phases in Ga₂O₃ polymorphs, thin films can be obtained by mist chemical vapor deposition (mist-CVD)¹. Using inexpensive sapphire substrates and mist CVD growth technique, there is a possibility to fabricate Ga₂O₃ devices at low cost.

Gallium oxide takes five different phases (α , β , γ , δ , and ε). The orthorhombic β -gallia structure $(\beta$ -phase) is the most stable crystal structure²⁾, and corundum-structure (α -phase) has the widest bandgap among them. As shown in Table 1 and Figure 1, the breakdown electric field (E_c) of α -Ga₂O₃ is about 30 times that of Si and 4 times that of SiC, and that offers the following advantages of α -Ga₂O₃ power devices over counterparts: (1) the thickness of the drift layer of α-Ga₂O₃ can be reduced to 1/30 of that of Si and 1/4 of that of SiC, and also higher doping is possible to the drift layer of α -Ga₂O₃, those combined enable reduction of the drift layer resistance to 1/340 that of Si and 1/6726 that of SiC in unipolar devices; and (2) the use of the same drift layer thickness enables a blocking voltage of 30 times that of Si and 4 times that of SiC. The characteristics (1) would enable further reduction of the on-resistance of unipolar devices. The

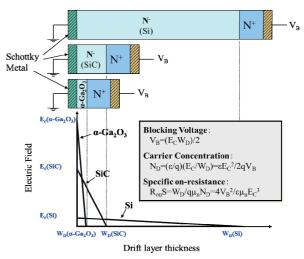


Fig. 1. The reason why low on-resistance can be attained.

characteristics (2) would enable the fabrication of devices operating at ultra-high blocking voltages (> 10 kV) and it would be possible to reduce the number of series connected devices required for construction of high power converter systems. Further, the wide bandgap of α -Ga₂O₃ (Eg = 5.3 eV) enables high temperature operation.

In this paper, the development status of Corundum-Structured Gallium Oxide Power Devices, such as SBD ³ and MOSFET ⁴ will be presented.

Acknowledgements:

Part of this work was supported by "Strategic Innovation Program for Energy Conservation Technologies" of the New Energy and Industrial Technology Development Organization (NEDO). Table 1. Comparison of physical properties with competing materials.

Name of material		Si	4H-SiC	GaN	β -Ga ₂ O ₃	α-Ga ₂ O ₃ (Corundum structure)
Bandgap Eg (eV)		1.1	3.3	3.4	4.5	5.3
Mobility µ (cm²/Vs)		1,400	1,000	1,200	300	300 (estimate)
Dielectric breakdown field Ec (MV/cm)		0.3	2.5	3.3	7	10 (estimate)
Relative dielectric constant		11.6	9.7	9.0	10	10 (estimate)
Baliga's figure of	Low frequency (ɛµEc³)	1	340	870	2,307	6,726 (estimate)
merit Si = 1	High frequency (µE _c ²)	1	50	104	117	238 (estimate)

References:

1) D. Shinohara, S. Fujita, JJAP Vol. 47, No. 9, 7311-7313 (2008).

2) M. Higashiwaki, H. Murakami, Y. Kumagai, A. Kuramata, JJAP Vol. 55, 1202A1 (2016).

- 3) M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, T. Hitora, App. Phys. Exp., vol. 9, 021101, 2016.
- 4) News release from FLOSFIA Inc., http://flosfia.com/20180713/

Biography:

CTO & Director of FLOSFIA Inc. Fellow, The Institute of Electrical Engineers of Japan (IEEJ)

He had been contributing in many research & development activities on Silicon (Si) and Silicon Carbide (SiC) power devices (SBD, PiN, JFET, MOSFET, IGBT) and their applications (Inverter & Converter for trains) in Toshiba Research and Development Center over 35 years. In addition, he has participated in many national projects on power devices. He joined FLOSFIA Inc. in 2017, and is directing research and development of corundum-structured Ga₂O₃ power devices as CTO & Director.

DX-12-CLK03

Emergent electromagnetism in quantum materials

*N. Nagaosa^{1,2}

¹ RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan, ² The University of Tokyo, Tokyo 113-8656, Japan

*<u>nagaosa@riken.jp</u>

Keywords: spin textures, spin-orbit interaction, Berry phase

Most of the physical properties of materials are formulated in terms of the electromagnetic responses. Electrical transport, magnetism, optical properties, dielectric response, superconductivity are all related to the responses of the materials to the electromagnetic field. Therefore, electromagnetism offers a fundamental of materials science. In this talk, I will discuss a new electromagnetism formulated for electronic systems in solids due to their quantum nature. Namely, the manifolds in Hilbert space are characterized by the connection and curvature, which correspond to vector potential and field strength of electromagnetic field, respectively. This geometric picture provides a predicting power for various properties of materials leading to the design of their functions.

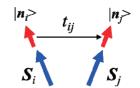
Especially in magnets, it often happens that the spin structure is non-collinear as shown in Fig.1. With the tilting of the spins, the quantum mechanical amplitude for the hopping of a conduction electron between the two sites gains a phase factor analogous to the vector potential. This vector potential leads to the emergent electromagnetic field in real space. For example, the three spins subtending a solid angle produce an emergent magnetic field leading to the Hall effect.

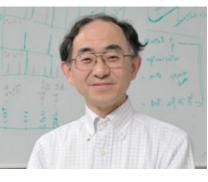
Various effects viewed from this emergent electromagnetism will be discussed including the nonreciprocal transport and rectification effect, nonreciprocal photovoltaic effects with possible application to solar cell, various Hall responses, multiferroics for insulator spintronics, and nano-scale inductor made from spiral magnets.

References (Example: non-mandatory, 10 point):

1) N. Nagaosa, Y. Tokura, Physica Scripta T146, 014020 (2012).

2) Y. Tokura, M. Kawasaki, N. Nagaosa, Nature Phys. 13(11), 1056-1068 (2017).




Fig. 1. Spin texture with tilting angle leads to the vector potential a for the transfer integral of conduction electrons.

Curriculum Vitae

Naoto Nagaosa

Deputy Director RIKEN Center for Emergent Matter Science RIKEN-ASI, Wako, Saitama 351–0198, Japan Tel: +81–48–467–9603 E-mail:nagaosa@riken.jp

Professor Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Tel: +81-3-5841-6811 E-mail: <u>nagaosa@ap.t.u-tokyo.ac.jp</u>

- Date of birth: February 21, 1958

- Education:

1980 B. S. Dept. of Applied Physics, University of Tokyo 1980–1983 Graduate School of Engineering, University of Tokyo

– Degrees:

1986 University of Tokyo, Ph.D (Physics)

- Appointments:

1983-1986	Research associate, Theory division, Institute for Solid State Physics, University of Tokyo
1986-1989	Research associate, Department of Applied Physics, University of Tokyo
1989-1993	Lecturer, Department of Applied Physics, University of Tokyo
1993-1998	Associate professor, Department of Applied Physics, University of Tokyo
1998-	Professor, Department of Applied Physics, University of Tokyo
2001-2007	Team Leader, Theory Team, Correlated Electron Research Center,
	Advanced Industrial Science and Technology
2007-2013	Team Leader, Theoretical Design Team, RIKEN
2010-2013	Team Leader, Strong-Correlation Theory Research Team, RIKEN
2013-	Deputy Director, RIKEN Center for Emergent Matter Science (CEMS),
	Division Director, Strong Correlation Physics Division, RIKEN CEMS
	Group Director, Strong Correlation Theory Research Group,

EX-11-CLK01

Antiferromagnets for neuromorphics and opto-electronics

*Tomas Jungwirth^{1,2}

¹ Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic, ² School of Physics and Astronomy, University of Nottingham, United Kingdom

^{*}jungw@fzu.cz

Keywords: antiferromagnets, spintronics, memories, neuromorphics, opto-electronics

Louis Néel pointed out in his Nobel lecture that while interesting from theoretical viewpoint, antiferromagnets did not seem to have any applications. Indeed, the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization have made antiferromagnets hard to control by tools common in ferromagnets. This has hindered both the research and utility of these abundant magnetic materials. Recent studies have shown, however, that current-induced spin-orbit torque and anisotropic magnetoresistance can be used to efficiently manipulate and detect the Néel vector (1). Switching signals in these first realizations of antiferromagnetic memories where in the fraction of a per cent scale – far from the requirements for practical applications. We will present a concept showing alternative means for electrical or optical switching, spanning a broad range from microseconds to femtoseconds, in memory devices comprising a simple film of an antiferromagnet and showing readout signals in the ~10-100% range. We fabricate analogue memory micro-devices with remarkably reproducible, reversible multi-level switching signals that are insensitive to magnetic fields. Our concept should be generally applicable to the broad family of stray-field-free antiferromagnets and opens research and development directions ranging from microelectronic memory-logic components for spiking neural networks to opto-electronic memory-sensor devices with high temporal and spatial resolution.

References:

1) Focus on Antiferromagnetic Spintronics, Nature Physics 14 (2018).

Curriculum Vitae

Tomáš Jungwirth

Born: October 23, 1967, Praha, Czech Republic Home page: http://www.fzu.cz/~jungw

Education and professional career:

2007-present	Head of the Department of Spintronics and Nanoelectronics,
	Institute of Physics, Academy of Sciences of the Czech Republic (ASCR)
2004-present	Professor, University of Nottingham, UK
2001-2007	Senior Research Scientist, Institute of Physics ASCR
2000-2002	Research Fellow, University of Texas, USA
1997 - 1999	Postdoctoral Fellow, Indiana University, USA
1997	PhD. degree in condensed matter physics, Charles University, Czech Republic
1991	M.S. degree in physics, Charles University, Czech Republic

Professional experience:

condensed matter physics; materials science; collective phenomena; electronic properties of semiconductor heterostructures, low-dimensional systems, and nanostructures; quantum Hall effects; carrier-mediated ferromagnetism in diluted magnetic semiconductors; magnetic, magneto-transport and magneto-optical properties of ferromagnetic semiconductors; spin-orbit coupling phenomena; anisotropic magnetoresistace in magnetic bulk and nano-devices; anomalous and spin Hall effects; non-magnetic, ferromagnetic, and antiferromagnetic metal and semiconductor spintronics

Accomplishments, awards, memberships:

- 225 publications, including 4 in Reviews of Modern Physics, 29 in Physical Review Letters, 30 in Nature/Science family journals; h-index 54 (WoS); ~ 12, 000 citations (~ 1, 500 in 2017); ~ 150 invited talks at international conferences and colloquia since year 2000
- Member of the Scientific Council of the European Research Council, 2015-
- Member of the Academy of Europe (Academia Europaea), 2014-
- European Research Council Advanced Grant, 2011-2016
- Member of the European Research Council Evaluation Panel, 2009-2015
- Praemium Academiae, 2008-2014
- Academy of Sciences of the Czech Republic Prize, 2005
- Otto Wichterle Prize of the Academy of Sciences of the Czech Republic, 2002
- NATO-NSF Advanced Fellowship, 2000
- Bolzano Foundation Prize of the European Physical Society, 1996
- Josef Hl'avka Prize, 1996
- Milan Odehnal Prize of the Union of Czech Mathematicians and Physicists, 1996

EX-11-CLK02

Quantum Criticality in Organometallics Studied by Neutrons & Muons

^{*}<u>Martin Månsson¹</u> ¹ Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden ^{*}<u>condmat@kth.se</u> Keywords: quantum magnetism, neutron scattering, muon spin spectroscopy

Quantum phase transitions have been in the center of attention for scientists world-wide to understand the universality of quantum critical behavior in many-body systems. Gapped Heisenberg spin- $\frac{1}{2}$ systems have the potential to exhibit quantum critical phenomena in their excitation spectra as a function of *e.g.* magnetic field and pressure. In such compounds, tuning of the spin gap exercises a control of the ground state and enables the study of novel fundamental many-body phenomena. In this keynote I will give a brief overview on how we are able to build tailored spin compounds using organometallic frameworks and how to experimentally study their

intrinsic properties using complementary neutron [1-3] and muon [4] techniques. Further, I will show how it is possible to induce quantum criticality in the quantum spin-liquid compound [C₄H₁₂N₂][Cu₂Cl₆] using both magnetic field and hydrostatic pressure. Finally, I will also show future extensions for how to use an organic materials data base (OMDB) and advanced machine learning to model, search and identify future interesting compounds for targeted synthesis and characterizations [5,6].

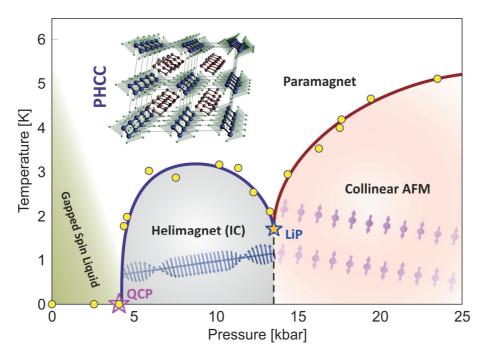


Figure 1: Pressure-Temperature phase diagram for the quantum spin-liquid compound [C₄H₁₂N₂][Cu₂Cl₆], also known as Piperazinium hexachloro - dicuprate (PHCC)

References

[1] D. Hüvonen, M. Månsson, *et al.*, Physical Review B **85**, 100410(R) (2012)

- [2] D. Hüvonen, M. Månsson, et al., Physical Review B 86, 214408 (2012)
- [3] D. Hüvonen, et al., Physical Review B 88, 094402 (2013)
- [4] M. Thede, M. Månsson, et al., Physical Review Letters 112, 087204 (2014)
- [5] <u>https://omdb.mathub.io/</u> [2019]
- [6] J. Hellsvik, M. Månsson, A.V. Balatsky, et al., arXiv:1907.01817

Your Portrait:

Your C.V.

Martin Månsson is an experimental physicist with a PhD in materials physics from KTH Royal Institute of Technology in Stockholm with a thesis focusing on angle-resolved photoelectron spectroscopy (ARPES) investigations of correlated electron systems, *e.g.* high-temperature superconductors (HTSC). Subsequently he spent seven years in Switzerland as a postdoc and scientist at the Paul Scherrer Institute (PSI), ETH Zurich and EPF Lausanne. Here he focused on studying novel energy materials (in collaboration with Toyota Central R&D Labs.) as well as quantum magnetism using neutron scattering and muon spin rotation/relaxation (μ^+ SR) techniques. Since 2015 he has returned to Stockholm and KTH where he is currently holding a tenured Assoc. Professor position in Applied Physics as well as Neutron Scattering. In addition to running a comprehensive research program on both sustainable energy materials as well as strongly correlated electron physics he is also highly involved in the strategic developments and educational efforts connected to the construction of the European Spallation Source (ESS) in Sweden. Among other things, he is *e.g.* the Director of Studies for the Swedish national graduate school in neutron scattering (SwedNess).

EX-11-CLI03

Probing antiferromagnets with currents

O. Gladii¹, R. L. Seeger¹, L. Frangou¹, G. Forestier¹, A. Hallal¹, P. Noël¹, S. Auffret¹, M. Rubio-Roy¹, I. Joumard¹, L. Vila¹, M. Chshiev¹, C. Gomez², S. Gambarelli³, M. Houzet⁴, *<u>V.</u> <u>Baltz¹</u>

¹ SPINTEC - Univ. Grenoble Alpes / CNRS / CEA / GINP, Grenoble, 38000, France ² SYMMES - Univ. Grenoble Alpes / CEA, ³ CIME Nanotech – GINP, ⁴ Pheliqs - Univ. Grenoble Alpes / CEA

<u>vincent.baltz@cea.fr</u>

Keywords: antiferromagnets, spin fluctuations, spin-charge conversion

The paradigm shift consisting of using the spin-dependent transport properties of antiferromagnets in electronics led to many exciting challenges.^{1),2)}

In this talk, we will first discuss the nature of a spin current flowing through fluctuating antiferromagnets and distinguish between electronic and magnonic spin transport. The method used to inject the spin currents involved ferromagnetic resonance and spin pumping in ferromagnetic-spin-injector/(non-magnetic-spin-

conductor)/antiferromagnetic-spin-sink multilayers. Three typical cases will be presented, magnonic spin flow in the insulating antiferromagnets NiO and NiFeOx, electronic spin flow in the metallic antiferromagnet IrMn, and electronic and magnonic parallel spin flows in IrMn when the latter is directly exchange coupled to the ferromagnetic-spin-injector. In this latter case, how it is possible to unravel the spin injection efficiency of the two types of spin flows will be demonstrated. We will also demonstrate how linear spin fluctuations enhance spin injection in spin-sinks (Fig. 1) and show why this is pertinent for studies of critical phenomenon like magnetic

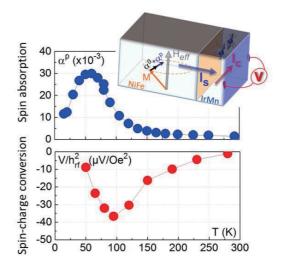


Fig. 1. Increased spin absorption due to the spin fluctuations of the absorber near its magnetic phase transition (here, the IrMn antiferromagnet). The expected increase of the spin-charge conversion in the absorber is masked by self-induced conversion in the injector (here, the NiFe ferromagnet).

phase transitions in ultra-thin films. To show the far-reaching practical relevance of the method, extension to various phase transitions will be presented.³⁾⁻⁶⁾ In search for spin fluctuations in several antiferromagnetic spin-sinks, we will also discuss how we found experimental evidence of self-induced spin-charge conversion in the spin-injector, corroborating the results of first-principle calculations.^{7),8)} Beyond spin currents, we will finally present a stimulating example of how antiferromagnets and superconductors may envision a common future by showing how to infer essential information about domain walls using Cooper pairs through antiferromagnets.^{9),10)}

References:

- 1) T. Jungwirth et al, Nat. Nanotechnol. 11, 231 (2016).
- 2) V. Baltz et al, Rev. Mod. Phys. 90, 015005 (2018).
- 3) Y. Ohnuma et al, Phys. Rev. B 89, 174417 (2014).
- 4) L. Frangou et al, Phys. Rev. Lett. 116, 077203 (2016).
- 5) Z. Qiu et al, Nat. Commun. 7, 12670 (2016).
- 6) O. Gladii et al, Phys. Rev. B 98, 094422 (2018) ; Appl. Phys. Express 12, 023001 (2019).
- 7) A. Tsukahara et al, Phys. Rev. B 89, 235317 (2014).
- 8) O. Gladii et al, to be published.
- 9) A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- 10) R. L. Seeger et al, to be published.

BALTZ Vincent

Vincent Baltz (born 1979) received the Ph.D. degree in physics in 2005 and the H.D.R. 'Habilitation à diriger des recherches' degree in physics in 2014 from the University of Grenoble, France. He has been conducting research in magnetism and spintronics with SPINTEC since 2007 as a C.N.R.S. research scientist. Before that, he was a post-doctoral fellow at the University of Leeds in the condensed matter group in the frame of a Marie-Curie European research training network.

His research interests include magnetic heterostructures with current focus on antiferromagnetic spintronics. His fields of expertise include magnetic relaxation, transfer of angular momentum, spin fluctuations, spin-charge conversion, and exchange bias coupling.

He is familiar with supervisions at the master, doctoral and post-doctoral level, was the coordinator of several funded projects, contributed to several committees, is accustomed to organization of workshops and conferences, and authored several publications (71 including 1 RMP, 16 PRB, and 5 PRL, ~2000 citations).

EX-11-CLI04

Nanocrystalline formation of the iron-based soft magnet FINEMET studied by operando muon spin rotation technique

*<u>A. Koda¹</u>, C. Ohmori², Y. Yoshizawa², M. Ota³, K. Ogura³, D. Azuma³, N. Chiwata³, Y. Miyake¹

¹ Muon Science Laboratory, Institute of Materials and Structural Science, High Energy Accelerator Research Organization (KEK), Tokai, Naka, Ibaraki 319-1106, Japan

² Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tokai, Naka, Ibaraki 319-1106, Japan

³ Hitachi Metals, Ltd., Minato-ku, Tokyo 108-8224, Japan

*coda@post.kek.jp

Keywords: FINEMET, soft magnetic material, nanocrystalline grain, operando measurement, µSR

FINEMET® has prevailed in our daily life. It was discovered in 1988 by Yoshizawa *et al.* that nano-sized grains formed by heat treatment of Fe-Cu-Nb-Si-B amorphous alloy exhibit superior soft magnetic behavior. Because of the high permeability and the high saturating magnetization, as well as the quite small magnetostriction, FINEMET® becomes widely used in many electronic power devices in these days. Accelerator facilities are no exception. It is emphasized that J-PARC (Japan Proton Accelerator Research Complex) is a pioneer to utilize FINEMET® as the wideband RF cavity.

Besides the high functionality, the microscopic mechanism of the nanocrystalline formation under magnetic field is yet to be clarified. It is well-known that the magnetic properties are controlled by applying magnetic field during the heat treatment. This gives an idea that the magnetic entropy plays an important role on the nano-crystal growing. Muon is a local magnetic probe, which sensitively detects the formation of ferromagnetic nano-crystals in FINEMET®. Moreover, the world's highest pulsed muon beam in J-PARC provides us an opportunity of *in situ* observation of time-derived development of the magnetic grains. Since 2010, we have started studying the nanocrystalline formation of FINEMET® under magnetic field at elevated temperature by using operando muon spin rotation (μ SR) technique. The field-dependent behavior of nanocrystalline formation is reported.

- 1997 Doctor of Science, Osaka University
- 1999 Postdoctoral Fellow, Meson Science Laboratory, High Energy Accelerator Research Organization (KEK)
- 2002 Research Fellowship for Young Scientists, Japan Society for the Promotion of Science
- 2005 Research Associate, Muon Science Laboratory, High Energy Accelerator Research Organization (KEK)
- 2006 Muon Section, Meterials and Life Science Division, J-PARC center
- 2019 Associate Professor, Muon Science Laboratory, High Energy Accelerator Research Organization (KEK)

FX-12-CLK01

Hard X-ray spectro-ptychography: Visualization of heterogeneous oxygen storage behavior in three-way catalyst particles

*Yukio Takahashi^{1,2,3}

¹Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

² Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

³ RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo, Hyogo, 679-5148, Japan

*<u>ytakahashi@tohoku.ac.jp</u>

Keywords : X-ray spectro-ptychography, Oxygen storage, Three-way catalysts

X-ray ptychography is a rapidly emerging technique at synchrotron facilities, which can non-destructively observe thick samples at the nanoscale. So far, we have developed the techniques for high-resolution and high-sensitivity hard X-ray ptychography using total-reflection mirrors as the X-ray focusing device at SPring-8 in Japan [1,2]. The use of X-rays as a probe makes it possible to image both structures and chemical states through the absorption edges of a target element. X-ray ptychography using multiple energies including the absorption edge of a specific element, which is often referred to as X-ray spectro-ptychography, enables us to visualize the chemical state of nanostructures buried within thick samples. Hard X-ray spectro-ptychography (HXSP) is a promising tool for effectively and efficiently tackling the intrinsically complicated mesoscale materials science and chemistry.

Recently, we have demonstrated the two-dimensional(2D) visualization of the cerium valence in micrometer-size platinum-supported cerium-zirconium oxide $Pt/Ce_2Zr_2O_x$ (x=7–8) three-way catalyst particles at better than 50 nm resolution by HXSP [3]. However, significant ambiguities, especially regarding the three-dimensional(3D) oxygen-diffusion-driven cerium oxidation tracking areas in individual $Pt/Ce_2Zr_2O_x$ particles during the heterogeneous oxygen storage process, remain in the 2D images derived from projection of the structure and valence state along the optical axis. 3D HXSP combined with computed tomography can completely visualize the chemical states inside bulk materials, although the huge amount of structural and chemical data in real 3D space. Very recently, we have proposed the approach of 3D HXSP imaging coupled with unsupervised learning to achieve the 3D nanoscale chemical imaging of heterogeneous reaction events in bulk solid materials [4]. The 3D HXSP method allowed realization of 3D nanoscale imaging of the structure and

valence state inside individual Pt/Ce₂Zr₂O_x particles during the oxygen storage process. Unsupervised data mining of the visualized 3D nanoscale chemical maps then successfully revealed the concealed heterogeneous oxygen-diffusion-driven 3D nanoscale Ce oxidation tracking areas inside the individual mixed-oxide particles during the oxygen storage process.

3D HXSP is expected to be an indispensable tool for determining the relationships between the structure and function of heterogeneous functional materials. In particular, in next-generation synchrotron facilities where fluxes with much higher coherence will be achieved, the present approach will be applied to in-situ 3D measurements, which can be expected to significantly accelerate progress in mesoscale materials science and chemistry.

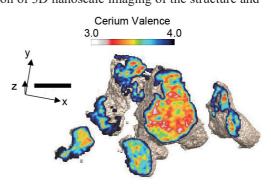
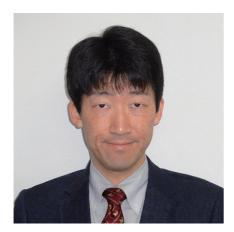



Fig. 1. 3D Ce valence image of $Pt/Ce_2Zr_2O_x$ particles. The scale bar is 700 nm.

References

- 1) Y. Takahashi, A. Suzuki, N. Zettsu, Y. Kohmura, Y. Senba, H. Ohashi, K. Yamauchi, T. Ishikawa, Phys. Rev. B 83, 214109 (2011).
- Y. Takahashi, A. Suzuki, S. Furutaku, K. Yamauchi, Y. Kohmura, T. Ishikawa, Appl. Phys. Lett. 102, 094102 (2013).
- M. Hirose, N. Ishiguro, K. Shimomura, N. Burdet, H. Matsui, M. Tada, Y. Takahashi, Angew. Chem. Int. Ed. 130, 1490-1495 (2018).
- 4) M. Hirose, N. Ishiguro, K. Shimomura, D.-N. Nguyen, H. Matsui, H. C. Dam, M. Tada, Y. Takahashi, Communications Chemistry 2, 50 (2019).

Brief Personal History:

Yukio Takahashi is a professor at the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University. His research interests lie in the development of new coherent X-ray imaging techniques for characterization of functional materials. He received his PhD degree in engineering from the Tohoku University in 2004. After a two-year postdoctoral researcher at the RIKEN SPring-8 Center, he became a lecturer at the Osaka University in 2007 and an associate professor in 2011. He became a professor at the Tohoku University in 2019.

FX-12-CLK02

Quantifying Inactive Lithium in Lithium Metal Batteries

*<u>Y. S. Meng^{1,2}</u>, C. Fang²

¹Department of NanoEngineering, University of California San Diego, La Jolla, 92093, USA

2 Materials Science and Engineering Program, University of California San Diego, La Jolla, 92093, USA * <u>shirleymeng@ucsd.edu</u>

Keywords: lithium metal, inactive lithium, quantification, failure mechanism, mitigation strategies

Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate Li⁺ in solid

electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li^0 , which together comprise the inactive Li. In this work, by establishing a new analytical method, Titration Gas Chromatography (TGC), we accurately quantify the contribution from unreacted metallic Li^0 to the total amount of inactive Li. We identify the Li^0 , rather than the Li^+ in SEI, as the dominating cause for the inactive Li and capacity loss. Using cryogenic electron microscopies to further reveal the micro- and nanostructure of inactive Li, we find that the Li^0 is

surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li⁰ global content to

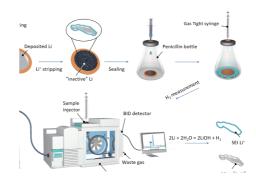


Fig. 1. Schematic working principle of the TGC method.

observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies for highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries.

References:

1) C. Fang, Y.S. Meng* et al, Quantifying Inactive Lithium in Lithium Metal Batteries, Nature, accepted, 2019

Dr. Y. Shirley Meng

Zable Endowed Chair Professor in Energy Technologies BA in Materials Engineering from Nanyang Technology University in 2000.

Ph.D. in Advance Materials for Micro & Nano Systems from the Singapore-MIT Alliance in 2005.

Postdoct Fellow and Research Scientist at MIT 2005-2008 Assistant Professor, Materials Science and Engineering, University of Florida in 2009 Assistant Professor (2009-2013), Associate Professor (2013-2017)

and Full Professor (2017 – present) at NanoEngineering, University of California, San Diego

Principal Investigator of Laboratory for Energy Storage and Conversion, <u>http://smeng.ucsd.edu/</u>

shirleymeng@ucsd.edu

PROFESSIONAL MEMBERSHIP/AWARDS

- Founding Director of Sustainable Power and Energy Center, <u>http://spec.ucsd.edu/</u>
- Serve as Executive Board Member and Secretary (Elected) for Battery Division of the Electrochemical Society USA (2014 present)
- Serve as the Executive Board Member and Treasurer for International Battery Association (IBA) (2017 present)
- Fellow of the Electrochemical Society (2018 present)
- Faculty Excellence Award in Research in Science and Engineering (2019)
- International Battery Materials Association IBA2019 Research Award (2019)
- IUMRS-Singapore Young Scientist Research Award (2017)

SELECT RECENT PUBLICATIONS

1. Nucleation of dislocations and their dynamics in layered oxide cathode ¥materials during battery charging,

A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T. A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, N. Hua, J. Wingert, H. Liu, M. Sprung, A. V. Zozulya, E. Maxey, R. Harder, Y. S. Meng, and O. G. Shpyrko, *Nature Energy*, 2018, 3, 641

- A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries

 Alvarado, M. A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge, M. Olguin, M. S. Ding,
 M. Gobet, S. Greenbaum, Y. S. Meng* and K. Xu*- *Materials Today*, 2018, 21, 4, 341
- Liquefied gas electrolytes for electrochemical energy storage devices
 C. S. Rustomji, Y. Yang, T. Kim, J. Mac, Y. Kim, E. Caldwell, H. Chung, and Y.S. Meng*-Science, 2017, 356, 1351
- Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
 S. Hy, H. D. Liu, M. Zhang, D. Qian, B.-J. Hwang and Y. S. Meng*-Energy & Environmental Science, 2016, 9, 1931
- 3D operando imaging of topological defect dynamics in battery nanoparticles
 A. Ulvestad, A. Singer, J. N. Clark, H. M. Cho, J. W. Kim, R. Harder, J. Maser, Y. S. Meng*, and O. G. Shpyrko*, *Science*, 2015, 348, 1344

GX-13-CLK01

Soft Electronic and Robotic Systems

*Martin Kaltenbrunner^{1,2}

¹ Department of Soft Matter Physics, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
² Soft Materials Laboratory, Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

*<u>martin.kaltenbrunner@jku.at</u>

Keywords: Soft Electronics, Soft Robotics, Electronic Skins, Biodegradable materials, Tough Hydrogels, Stretchable Electronics, Soft Sensors

Electronics of tomorrow will be imperceptible and will form a seamless link between soft, living beings and the digital world. Exploring the fundamental physics, mechanical form factors, and materials required to meet the needs of this new generation of *soft* electronics and *soft* machines is driving multidisciplinary research worldwide. Weight, flexibility and conformability are pivotal for future wearable, soft and stretchable electronics to proliferate. The abilities to be imperceptible, epidermal, transient and self-healing are fueling the vision of autonomous smart appliances to be embedded everywhere, on textiles, on our skin, and even in our body.

This talk introduces a technology platform for the development of large-area, ultrathin and lightweight electronic and photonic devices, including solar cells, light emitting diodes and photodetectors, active-matrix touch panels, implantable organic electronics, imperceptible electronic wraps and "sixth-sense" magnetoception in electronic skins. Air stable perovskite solar cells, only 3 µm thick, endure extreme mechanical deformation and have an unprecedented power output per weight of 23 W/g. Highly flexible, stretchable organic light emitting diodes are combined with photodetectors for on-skin photonics and pulse oximetry, providing electrical functionality in yet unexplored ways. Tactile sensor arrays based on active-matrix organic thin film transistors can be operated at elevated temperatures and in aqueous environments as an imperceptible sensing system that ensures the smallest possible discomfort for patients requiring medical care and monitoring. Combined with organic amplifiers and biocompatible conductive gels, we demonstrate in vivo recording of vital signals. E-skins with GMR-based magnetic field sensors equip the wearer with an unfamiliar sense that enables perceiving of and navigating in magnetic fields. These large area sensor networks build the framework for electronic foils and artificial sensor skins that are not only highly flexible but become highly stretchable and deployable when combined with engineered soft substrates such as elastomers, shape memory polymers or hydrogels. We show mobile health monitoring systems, smart, tissue-like electronics and soft robots that utilize tough hydrogels as soft transducers, generators and adaptive lenses. A newly developed direct writing method for ultrathin oxide dielectrics and semiconductors will allow low-cost and large area fabrication of such soft systems.

Tackling issues of sustainability and resourceful production, we here introduce materials and methods for soft systems that facilitate a broad range of applications, from transient wearable electronics to metabolizable soft robots. These embodiments are reversibly stretchable, are able to heal and are resistant to dehydration. Our forms of soft electronics and robots – built from resilient biogels with tunable mechanical properties – are designed for prolonged operation in ambient conditions without fatigue, but fully degrade after use through biological triggers. Electronic skins merged with imperceptible foil technologies provide sensory feedback such as pressure, strain, temperature and humidity sensing in combination with untethered data processing and communication through a recyclable on-board computation unit. Such advances in the synthesis of biodegradable, mechanically tough and stable iono-and hydrogels may bring bionic soft systems a step closer to nature.

Martin Kaltenbrunner Soft Matter Physics Department, LIT Soft Materials Lab, Johannes Kepler University, Altenberger Straße 69, 4040 Linz Austria; Phone: +43 732 2468 9764 email martin.kaltenbrunner@jku.at.

Kaltenbrunner is a full professor at the Johannes Kepler University, heading the Soft Matter Physics Department and the LIT Soft Materials Lab. He received his master's and PhD degrees in physics from the Johannes Kepler University in 2008 and 2012, respectively. He then joined the Someya-Sekitani Lab for Organic Electronics at The University of Tokyo as postdoctoral researcher prior to his present position. Kaltenbrunner's research interests include soft electronics and machines, biodegradable soft materials, photovoltaics, lightning and thin film transistors, soft transducers and robotics, flexible and stretchable electronics, and electronic skin.

GX-13-CLK02

Design, development, and doping of novel inorganic optoelectronic functional materials

*Toshio Kamiya^{1,2}, and Hideo Hosono^{1,2}

¹ Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, ² Materials Research Center for Element Strategy, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan

* <u>kamiya.t.aa @m.titech.ac.jp</u>

Keywords: Optoelectronic devices, Materials design, Doping, Defects, Density functional theory

Many functional oxide materials are already used for active components of optoelectronic / mechanical devices such as piezoelectric actuators / gyroscopes, non-volatile memories such as ferroelectric RAM, positive temperature coefficient (PTC) thermistors, electrochromic anti-dazzle mirrors and so on. As for thin-film transistors (TFTs), the first proposal was given with CdS in 1961 by following the proposal of Si MOS field-effect transistors (FETs) in 1960. History of oxide FETs goes back also to mid 60's with SnO₂, In₂O₃ and ZnO FETs. However, the oxide TFT research had disappeared from open-accessible literatures after that, due probably to their instability. After the long incubation period, revival of oxide TFT research came up in 1996 as SnO₂ FET, and poly ZnO TFT has attracted intensive interest for overtaking the a-Si TFT technology. On the other hand, as known, e.g., in poly-Si TFTs, carrier transport, and device performances, and their stability are affected seriously by grain boundary issues in polycrystalline semiconductors. Amorphous oxide semiconductors (AOSs) represented by a-In-Ga-Zn-O (a-IGZO) then gathered practical interest due to their advantages over polycrystalline semiconductors; i.e., they are free from the grain boundary issues, their devices are fabricated at low temperature even at room temperature on glass / plastic substrate as well as they possess satisfactory high electron mobilities $>10 \text{ cm}^2/(\text{Vs})$; thus, they are now employed in many flat-panel displays from very high-resolution liquid-crystal displays to jumbo (up to 88 inch diagonal) organic light-emitting diode TVs. Although they are already commercialized, there remain many issues on their stability, and these are related closely to defects. Also for crystalline semiconductors, carrier doping is essential to develop new semiconductor materials and devices, while doping capability is often inactivated by so-called 'self-compensation' effects in particular for wide bandgap materials such as oxides and nitrides; therefore, understanding and control of such defects are critical to design and develop new functional materials.

In this paper, we will discuss what we need to consider to design and develop new functional materials with assistance of first-principles density functional theory (DFT) calculations. It will cover several categories of materials such as AOSs, ultrawide band gap materials, semiconductors, light-emitting materials, and thermoelectric materials, and also refer to the applications of DFT to extrapolating new materials, synthesizing high-quality materials with less defects, designing effective doping routes etc.

Toshio Kamiya started his research carrier as an assistant professor of Department of Inorganic Materials at Tokyo Tech., Tokyo, Japan, in 1991, and moved to Interdisciplinary Graduate School of Science and Engineering in 1996. He received the Dr(Eng) degree in materials science from Tokyo Institute of Technology in 1996. He spent two years at Microelectronics Research Centre, Cavendish Laboratory at the University of Cambridge as a visiting scholar from 2000 to 2002. He became an associate professor in 2002 and a full professor in 2010 in the Materials and Structures Laboratory at Tokyo Institute of Technology. He became the vice director of Materials Research Center for Element Strategy in 2012, and the director of Laboratory for Materials and Structures & vice director of Institute of Innovative Research in 2017.

His field of research includes exploration, materials design, and device applications of new functional inorganic materials. He has published about 400 scientific papers. He was awarded with The Ceramics Grand Prize by The Ceramics Society of Japan in 2016, SID Special Recognition Award in 2015, The CerSJ Awards for academic achievements in ceramic science and technology in 2013, Tejima Research Award (Invention) in 2011, The Young Scientists' Prize by MEXT in 2007, The Advanced Technology Award by the Fuji-Sankei group in 2005, etc, and the Fellow of The Japan Society of Applied Physics and The Ceramic Society of Japan.

Education

April, 1986 – March, 1990: Undergraduate course at Department of Inorganic Materials, Faculty of Engineering, Tokyo Institute of Technology (Bachelor of Engineering)

April, 1991 – March, 1992: Master Course at Department of Inorganic Materials, Graduate School of Engineering, Tokyo Institute of Technology

March, 1992: Leave Department of Inorganic Materials, Tokyo Institute of Technology

December, 1996: Obtain Doctor of Engineering at Department of Inorganic Materials, Tokyo Institute of Technology for Study on Dielectric Crystals by First-Principles and Molecular Simulations

Professional Appointments

April, 1992: Assistant Professor of Department of Inorganic Materials, Tokyo Institute of Technology

November, 1996: Move to Department of Electrochemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology

April, 1997: Move to Materials and Structures Laboratory, Tokyo Institute of Technology

January, 2002: Lecturer at Materials and Structures Laboratory, Tokyo Institute of Technology

- December, 2003: Associate Professor at Materials and Structures Laboratory, Tokyo Institute of Technology
- August, 2010 present: Professor at Materials and Structures Laboratory, Tokyo Institute of Technology
- July, 2012 present: Vice Director of Materials Research Center for Element Strategy, Tokyo Institute of Technology
- July, 2017 present: Vice Director of Institute of Innovative Research, Tokyo Institute of Technology
- July, 2017 present: Director of Laboratory for Materials and Structures, Tokyo Institute of Technology

GX-13-CLK03

Gold Nanorods with Ultranarrow LSPR Bands

*Luis M. Liz-Marzán^{1,2}

¹CIC biomaGUNE, Donostia-San Sebastián, 20014, Spain, ²Ikerbasque, Bilbao, 48003, Spain *Ilizmarzan@cicbiomagune.es

Keywords: gold nanorods, seeded growth, localized surface plasmon resonance, ultrafast lasers

Although seeded-growth methods have made available to us an extensive library of anisotropic metal nanoparticles, the chemical complexity of the growth solution, often involving organic additives, and the structural instability of the seeds hinder the quest for high quality products. For the sake of synthetic simplicity, merging different synthetic protocols by finding common growth routes, is a mandatory step to reach a universal growth mechanism and reproducible fabrication. This communication will introduce two recent discoveries, related to improving the optical quality of both pentatwinned and single crystal gold nanorods.

We recently demonstrated that a thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of different types of pentatwinned nanoparticles, including nanorods, with a high monodispersity and tunable aspect ratio.

On the other hand, although single crystal Au nanorods can be readily obtained with very high quality directly from optimized seeded growth methods, polydispersities below 10% are still difficult to reach, which leads to some broadening of the longitudinal LSPR band. We show here that femtosecond laser irradiation may lead to significant narrowing of the LSPR band, even to the limit of the single particle, as calculated from theoretical models, meaning pure "optical monodispersity".

References

1) G. González-Rubio et al., Science, 358, 640-644 (2017).

2) G. González-Rubio et al., ACS Nano, 13, 4424-4435 (2019).

Luis Liz-Marzán is Ikerbasque Professor and Scientific Director of the Center for Cooperative Research in Biomaterials, CIC biomaGUNE, in San Sebastián (Spain), since September 2012. He graduated in chemistry from the University of Santiago de Compostela, was postdoc at Utrecht University and Professor at the University of Vigo, Spain (1995-2012). He has been Invited Professor at Tohoku University, University of Michigan, University of Melbourne, University of Hamburg, the Max-Planck Institute of Colloids and Interfaces, King Saud University, Ecole Normale Supérieure Paris-Saclay and Jiangnan University. Liz-Marzán received numerous research awards, including a Humboldt research award, ACS Nano lecture award, Langmuir lectureship, Rhodia Prize of the European Colloid and Interface Society, Medal of the Spanish Royal Society of Chemistry, Rey Jaime I award, National Chemistry Prize of Spain, as well as 2 ERC Advanced Grants. He is also member of the Royal Spanish Academy of Sciences, the European Academy of Sciences and Academia Europaea. He is a highly cited researcher who has co-authored over 450 publications and 8 patents, and has delivered over 450 invited lectures and seminars worldwide. Liz-Marzán has supervised over 30 PhD students and 50 postdocs, many of them holding academic positions worldwide. He is currently associate editor of ACS Nano, has been senior editor of Langmuir and co-editor of ACS Omega, and serves in the editorial boards of various other journals, including Science. His major research activity is devoted to understand the growth mechanisms of metal nanocrystals, to tailor their surface chemistry and thereby directing their self-assembly. He also works on the design of biomedical applications based on the plasmonic properties of well-defined metal nanoparticles and nanostructures, including surface enhanced Raman scattering.

GX-13-CLK04

Perovskite Solar Cells: History, Progress and Perspective

*<u>Nam-Gyu Park</u>

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea *npark@skku.edu

Keywords: Perovskite, Solar Cell, High Efficiency, Large-area

Since the first report on the 9.7% efficiency, 500 h-stable solid-state perovskite solar cell (PSC) in 2012 by our group, following two seed works on perovskite-sensitized liquid junction solar cells in 2009 (Miyasaka et al) and 2011 (Park et al), a power conversion efficiency (PCE) of 25.2% was recorded in 2019. According to Web of Science, publications on PSC increase exponentially since 2012 and total number of publications reaches over 13,000 as of August 2019, which indicates that PSC is considered as promising photovoltaics.

Although high photovoltaic performance was achieved from small area cell, scalable technologies are required for commercialization of PSC. In order to shift from small-area device to large-area module, the cheap materials and an effective coating procedure are highly required. We developed cost-effective materials based on delta FAPbI₃ powder for high efficiency PSC. The best PCE of 22.6% was achieved using the synthesized perovskite powder (certified stabilized efficiency was 21%). For large-area uniform perovskite coating, a precursor solution containing perovskite cluster was developed. Homogeneous MAPbI₃ perovskite film (>100 cm²) was D-bar coated within 20 s, which demonstrated the PCE approaching 18%. Bifacial stamping technique was developed, which led to both high quality FAPbI₃ and MAPbI₃ on a large scale at milder condition. For higher efficiency, managing interfacial recombination is of critical importance. Interfacial engineering with organic or inorganic materials is found to improve voltage and fill factor, confirming that reduction in recombination can result in improvement of photovoltaic performance of PSC.

References (NamGyu Park, et al.)

- 1. Printable organometallic perovskite enables large-area, low-dose X-ray imaging, *Nature*, 550, 87 (2017)
- 2. Towards stable and commercially available perovskite solar cells, Nature Energy, 1, 16152 (2016)
- 3. Self-formed grain boundary healing layer for highly efficient CH₃NH₃PbI₃ perovskite solar cells, *Nature Energy*, 1, 16081, (**2016**)
- 4. Growth of CH₃NH₃PbI₃ cuboids with controlled size for high-efficiency perovskite solar cells, *Nature Nanotechnology*, 9, 927 (2014)
- 5. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, *Science*, 26, 1593 (**2014**)
- 6. Mechanism of carrier accumulation in perovskite thin-absorber solar cells, *Nature Communications*, 4, 2242 (2013)
- 7. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, *Scientific Reports*, 2, 591 (2012)
- 8. 6.5% efficient perovskite quantum-dot-sensitized solar cell, *Nanoscale*, 3, 4088 (2011)

Nam-Gyu Park is Distinguished professor and SKKU-Fellow at School of Chemical Engineering, Sungkyunkwan University (SKKU). He received his B.S. degree in chemical education, M.S. and Ph.D. degrees in chemistry from Seoul National University in 1988, 1992 and 1995, respectively. He worked at ICMCB-CNRS, France, from 1996 to 1997 and at National Renewable Energy Laboratory, USA, from 1997 to 1999 as postdoctoral researchers. He was director of solar cell research center at Korea Institute of Science and Technology (KIST) from 2005 to 2009 and principal scientist at Electronics and Telecommunications Research Institute (ETRI) from 2000 to 2005 before joining SKKU as a full professor in 2009. He is a fellow of Korean Academy of Science and Technology (KAST) since 2017. He has been working on high efficiency mesoscopic nanostructured solar cells since 1997. *He is pioneer of solid-state perovskite solar cell, which was first developed in 2012*. He was selected as *a New*

Class of Nobel Prize-Worthy Scientists in September 20, 2017 and included in *highly cited researchers (top 1% scientists)* in Nov. 15, 2017 and Nov. 27, 2018 by Clarivate Analytics. He received awards including Scientist Award of the Month (2008), KIST Award of the Year (2009), Dupont Science and Technology Award (2010), SKKU fellowship (2013 and 2018), PVSEC Hamakawa Award (2015), Dukmyung KAST Engineering Award (2016), ACS-KCS Excellence Award (2018), and Samsung *Ho-Am Prize* (2018). Prof. Park has currently more than 300 refereed publications and more than 70 patents. He received H-index of 84 (google scholar). He is senior Editor of ACS Energy Letters and serves on the Editorial Advisory Board for Chem. Rev., ChemSusChem, and Solar RRL.

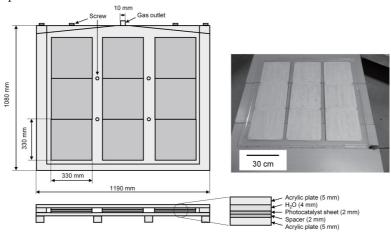
HX-11-CLK01

Photocatalytic water splitting for solar hydrogen production

*Kazunari Domen^{1,2}

¹ Research Initiative for Supra-Materials, Shinshu University, Nagano-shi, Nagano 380-8553, Japan, ² The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

<u>domen@shinshu-u.ac.jp; domen@chemsys.t.u-tokyo.ac.jp</u>


Keywords: Particulate photocatalyst, Photocatalyst sheet, Panel reactor, Scalability, Non-oxide, Cocatalyst

Sunlight-driven water splitting has been studied actively for production of renewable solar hydrogen as a storable and transportable energy carrier.¹⁾ Both the efficiency and the scalability of water-splitting systems are essential factors for practical utilization of renewable solar hydrogen. Particulate photocatalyst systems do not involve any secure electric circuit and can be spread over wide areas by inexpensive processes potentially. It is therefore important to activate particulate photocatalysts and develop their reaction systems.

SrTiO₃ is a photocatalyst active in overall water splitting under UV light irradiation with loading of proper cocatalysts. The author's group has found that doping Al into SrTiO₃ boosts the water splitting activity by two orders of magnitude.²⁾ Through tuning of the preparation and modification methods of Al-doped SrTiO₃, the apparent quantum yield of photocatalytic water splitting has been upgraded to 56% and even greater at 365 nm. Panel reactors are studied to spread such active particulate photocatalysts (Fig. 1). Particulate photocatalysts are thinly fixed on substrates, and such "photocatalyst sheets" are contained in panel reactors. A panel reactor containing Al-doped SrTiO₃ photocatalyst sheets releases product hydrogen and oxygen gas bubbles at a rate corresponding to a solar-to-hydrogen energy conversion efficiency of 10% under intense UV illumination even when the water depth is merely 1 mm, and it can maintain the activity over several months under sunlight illumination.³ A 1-m²-sized photocatalyst panel reactor splits water under natural sunlight irradiation without a significant loss of the intrinsic activity of the photocatalyst sheets.²⁾ Panel-type reactors can accommodate various kinds of photocatalysts sheets and are expected to be built using light and inexpensive materials, being suitable for large-scale solar hydrogen production from water.

In practice, it is essential to develop photocatalysts active under visible light irradiation. Various oxides, (oxy)nitrides, and (oxy)chalcogenides have been developed.⁴⁾ Some non-oxide photocatalysts can split water into hydrogen and oxygen under irradiation of up to approximately 600 nm. Two different photocatalysts can also be combined so that hydrogen and oxygen are evolved on the respective photocatalysts efficiently.

In my talk, the latest progress in photocatalytic materials and reactors and concepts toward large-scale demonstration will be presented.

Fig. 1. A 1-m²-sized photocatalyst panel reactor accommodating photocatalyst sheets. Reprinted with permission from ref. 2. Copyright © 2017 Elsevier Inc.

References

- 1) Hisatomi et al., Nat. Catal., 2, 387-399 (2019).
- 2) Goto et al., Joule, 2, 509-520 (2018).
- 3) Lyu et al., Chem. Sci., 10, 3196-3201 (2019)
- 4) Chen et al., Nat. Rev. Mater., 2 17050 (2017).

Curriculum Vitae:

Name: Kazunari DOMEN

- Special Contract Professor, Research Initiative for Supra-Materials (RISM), Shinshu University
- · University Professor, The University of Tokyo

Research interests:

- · Development of photocatalysts for water splitting and solar hydrogen production
- · Study on reaction mechanisms of heterogeneous catalysis by Infrared Spectroscopy
- Surface reaction dynamics by nonlinear laser spectroscopy
- · Development of new functional materials for catalysis

Academic Background:

- · 1976 B.S. The University of Tokyo
- · 1979 M.S. The University of Tokyo, School of Science
- · 1982 Ph.D. The University of Tokyo, School of Science

Professional Career:

- · 1982-1990 Associate Researchers, Chemical Resources Laboratory, Tokyo Institute of Technology
- · 1990-1996 Associate Professor, Chemical Resources Laboratory, Tokyo Institute of Technology
- · 1996-2004 Professor, Chemical Resources Laboratory, Tokyo Institute of Technology
- 2004-2019 Professor, Department of Chemical System Engineering, School of Engineering, The University of Tokyo
- · (Visiting Scientist at IBM Almaden Research Center from 1985 to 1986.)
- · 2017-present Special Contract Professor, Cross appointment, Center for Energy & Environmental Science, Shinshu University
- · 2019-present Special Contract Professor of Research Initiative for Supra-Materials (RISM), Shinshu University
- · 2019-present University Professor, the University of Tokyo

Awards & Honors:

- · 1990; Encouragement Prize, Catalysis Society of Japan,
- · 1991; Catalyst Preparation Awards,
- · 2007; Catalysis Society of Japan Awards
- · 2011; The Chemical Society of Japan Awards
- · 2018; The Japan Petroleum Institute Award
- · 2018; The Japanese Photochemistry Association Lectureship Award
- · 2019; Lee Hsun Lecture Award
- · 2019; Advance of Catalysis Award of APACS

HX-11-CLK02

Plasma Synthesis, Conversion, and Processing of Energetic Materials

*<u>Alexander Fridman</u> Drexel University, Nyheim Plasma Institute, Philadelphia, Pennsylvania, USA, 19104) *<u>fridman@drexel.edu</u> Keywords: gliding arcs, pulsed plasma, methane conversion, polymeric nitrogen

Presentation reviews latest experimental results obtained in Nyheim Plasma Institute of Drexel University on plasma-chemical material treatment processes, focused on liquid and gas fuel conversion and processing, as well as on plasma-chemical synthesis of novel energetic materials in non-thermal plasma discharges. Major discharges in focus are:

I. Non-equilibrium gliding arcs stabilized in reverse vortex Tornado flow: Physics and plasma parameters of gliding arcs will be discussed in relation to their material processing

abilities and effectiveness 2. Micro- and nanosecond pulsed dielectric ba

2. *Micro- and nanosecond pulsed dielectric barrier discharges* Physics and plasma parameters of pulsed DBD in gases and liquids will be discussed in relation to their material processing abilities and effectiveness

3. Cold and transitional discharges in liquids

Physics and plasma parameters of cold discharges in liquids without bubbles will be discussed in relation to their material processing abilities and effectiveness

Major specific plasma-chemical processes in focus are:

- 1. Methane conversion in mixture with different gases
- 2. Methane (natural gas) direct liquefaction process
- 3. Liquid-phase synthesis of polymeric nitrogen compounds

Mechanisms of the plasma-chemical processes and produced materials characterization are discussed in this presentation, as well as physical and plasma-chemical kinetics of the processes in strongly non-equilibrium conditions

Alexander Fridman received the B.S./M.S. and Ph.D. degrees in physics and mathematics from the Moscow Institute of Physics and Technology, Moscow, Russia, in 1976 and 1979, respectively, and the D.Sc. degree in mathematics from the Kurchatov Institute of Atomic Energy, Moscow, in 1987. He is the Nyheim Chair Professor of Drexel University, Philadelphia, PA, and the Director of the Drexel Plasma Institute, where he works on plasma approaches to material treatment, fuel conversion, and environmental control. He has more than 30 years of plasma research experience in national laboratories and universities of Russia, France, and USA. He has authored or coauthored five books and more than 350 papers. Prof. Fridman was a recipient of numerous awards, including the Stanley Kaplan Distinguished Professorship in Chemical Kinetics and Energy Systems, the George Soros Distinguished Professorship in Physics, and the State Prize of the U.S.S.R. for the discovery of selective stimulation of chemical processes in nonthermal plasma, ICRP Award, and Plasma Chemistry Award.

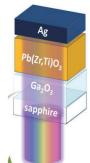
HX-11-CLK03

Gallia(Ga₂O₃) for Green and Efficient Energy applications

*<u>E.Chikoidze¹</u>, A.Perez-Tomas², C.Sartel¹, D. J. Rogers³, C. Y .Dumont¹

¹Université de Versailles- CNRS, Université Paris-Saclay, Versailles, 78035, France ²Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08010, Spain

³Nanovation, Châteaufort, 78117 France


*<u>Ekaterine.chikoidze@uvsq.fr</u>

Keywords : Gallium Oxide, Optoelectronic properties; Solar and Power Electronics;

Renewable **Solar energy** is becoming a mainstream source of energy, and **power electronics** is a key enabler of its' successful integration.

Recent breakthroughs in material quality have led to a "rediscovery" of Ga_2O_3 such as a high band gap (~5eV) transparent conductor, transparent field-effect transistors, photodetectors but also as a platform for power electronic devices.

An unexpectedly low 2D-like resistivity has been shown for n type $Ga_2O_3/r-Al_2O_3$ which is resistant to high dose proton irradiation and largely invariant (metallic) over temperatures from 2 to 850K.¹ The remarkable resilience and stability of the electrical properties under thermal and highly ionizing radiation stressing, combined with the extended transparency range and the known toughness under high electrical field could open up new perspectives for use as expanded spectral range transparent electrodes (e.g. for UV harvesting solar cells or UV LEDs/lasers) as well as robust Ohmic contacts for use in extreme environments/applications. As an example, we have showed the use of Ga_2O_3 electrodes has enabled, for the first time, an above-bandgap bulk photovoltaic effect on sandwich-like capacitors with transparent conducting electrodes (the architecture of solar cells) and under white light. These are crucial

breakthroughs towards the implementation of the bulk photovoltaic effect in solar cells.² Fig. 1. Schematic of the sandwiched structure of the archetypical thin-film solar cell;

While there are several *n*-type transparent semiconductor oxides (TSO) for optoelectronic applications their required p-type counterparts oxides are known to be more challenging. We have demonstrated that Ga₂O₃ is also

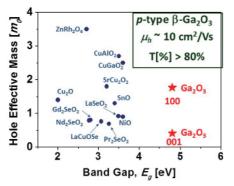


Fig.2 Hole Effective masses for different oxides. Insert: results for Ga₂O₃ from our experiment

the intrinsic (or native) *p*-type TSO ³ with the largest bandgap for any reported *p*-type TSO (e.g. NiO, SnO, delafossites, oxychalcogenides). The achievement of hole mobility in excess of 10 cm²/Vs and (high temperature) free hole concentrations in the ~10¹⁷ cm⁻³ range.⁴ Fig.2

Attaining p-type doping in gallium oxide may already be an important step for technological integration. Mainly, in power applications, the p-type demonstration is particularly important as the p-n junction could sustain larger voltages than any Schottky unipolar junction. In other words, the demonstration of Ga₂O₃ bipolarity represents a definitive step forward when considering this potentially low-cost oxide wide band gap semiconductor technology in power applications now dominated by the prohibitively expensive Silicon Carbide substrates.

Surprising optoelectronic properties of Gallia opens a new pathway for "Oxitronics" integration in Renewable energy technologies and electrical vehicles.

References:

- 1) E.Chikoidze et al ,Materials Today Physics. 8, 10 (2019)
- 2) A.Perez-Tomas et al, Materials Today Energy. Accepted September, (2019)
- 3) E.Chikoidze et al Materials Today Physics. 3, 118 (2017)
- 4) E.Chikoidze et al, Journal of Materials Chemistry C. 7, 10231 (2019)

Ekaterine Chikoidze 1992 Graduated with honour Faculty of Physics, Material Science Department at Tbilisi State University, Georgia; 1992- 1995 working as a translator (Russian, Italian, English) in editorial houses of journals /newspapers. 1996-1999 Doctorate student Material Science Department at Tbilisi State University, Georgia; 1999 PhD in the field of "semiconductors and dielectrics".From 2000-2006 Senior researcher in the lab of semiconductor material science. 2001-2003 Visiting Researcher in Politecnico di Milano, Department of Physics, centre of Ultrafast phenomenon and Biomedical Optics Optics, Italy. 2003–2006 Visiting Researcher in CNRS, France. 2007-present permanent researcher and scientific communication manager of the laboratory GEMaC, CNRS, Paris Saclay University, France. Coordinator of several bilateral, national and international projects, member of EU networks, Organizer of several workshops and member of scientific committees.

Having more than 20 years of experience of working in the field of physical properties of Wide band gap materials : ZnS, Diamond, ZnO, 3d magnetic oxides, Cu based transparent conducting oxides, Gallium Oxide. The one of the main focus activity is build up the specific instrumentation and study electrical and magneto transport properties of Oxides. In GEMaC/CNRS she has developed several home built experimental instrumentation dedicated to study highly resistive thin films: Seebeck Effect, Photoconductivity upgraded PPMS(Quantum design) set up, giving possibility to measure extremely high (up to 100GOhm) resistive materials in a very broad range of temperature and magnetic field. Having collaborations with researchers from 12 countries, author of 68 publications, 89 participations in Conferences, 10 invited talks.

Research Gate:https://www.researchgate.net/profile/E Chikoidze

HX-11-CLK04

Lead-free Piezoelectric Ceramics - Future perspectives -

*<u>Akira Ando</u> Murata Manufacturing Co., Ltd. *a_ando@murata.com Keywords: Piezoelectric PZT lead-free sensor, actuator

Various lead free piezoelectric material families such as alkaline niobates, bismuth perovskites, bismuth layer structured ferroelectrics (BLSF) etc. have been researched for long time more than 60 years.

These lead free materials were almost discovered in the USA in processes of pursuing good piezoelectric materials for telecommunication devices in 1950's¹). However, after the discovery of Pb(Ti, Zr)O₃ (PZT) family materials with high piezoelectric characteristics, the above researches on the lead free piezoelectric materials soon decreased.

Public concern for environmental pollution raised in 1970's, then researches on the lead free piezoelectric materials became active again in the USA and in Japan¹). Basic data of characteristics of the lead free piezoelectric materials were taken at this time, however no lead free materials could not exceed the PZT, the researches on the lead free materials decreased.

Importance of Environments COnscious (ECO) technologies was widely recognized again in 1990's and the researches on lead free piezoelectric materials have become active again.

At this time, several lead free materials which partly exceed PZTs were discovered.

For example, some BLSF materials are better than PZTs as resonator materials²), and Bi perovskites show better ultrasonic vibration characteristics than those of PZTs³).

Furthermore, practical non-oxide piezoelectric materials; Sc doped AlN were developed in Japan for thin film resonator devices⁴), and they have already made huge industries in the USA.

In the presentation these histories of researches on various lead free piezoelectric material are reviewed, and their current status and future perspectives are described.

References (Example: non-mandatory, 10 point):

1) Akira Ando; Shashank Priya ed. "Lead-Free Piezoelectrics" Chapter 6 pp. 177-208, Springer(2012)

2) Akira Ando; Shashank Priya ed. "Lead-Free Piezoelectrics" Chapter 13 pp. 373-403, Springer(2012)

3) Tonshaku Tou, et al.; Japanese Journal of Applied Physics 48 (2009) 07GM03

4) Morito Akiyama et al.; Adv. Mater., 21, 593–596 (2009).

Biography

Dr. Akira Ando is a general manager of material development department of Murata Mfg. Co., Ltd. He has joined Murata Mfg. Co., Ltd. soon after he graduated from Hiroshima University in 1983. He received doctoral degree from Tokyo Institute of Technology at 2003. He is in charge of research and development in new material technologies. His expertise is research and development on functional ceramics such as piezoelectric or other ferroelectric materials and applications. He received the Richard Fulrath award from the American ceramic society (2002), and the academic award from the ceramic society of Japan (2009).

IX-13-CLK01

Importance of strengthening "venous industry" for future plastics

^{*}N. Kawashima

Shiodome City Center, 1-5-2, Higashi Shimbashi, Minato-ku, Tokyo 105-7122, Japan *
Nobuyuki.kawashima@mitsuichemicals.com
Xanyuarda: Fassil based plastics. Pioplestics. Circular Fasenemy, Vaneus Industry.

Keywords: Fossil-based plastics, Bioplastics, Circular Economy, Venous Industry

Plastics contribute to healthy and sound everyday life, but the chemical industry is facing new challenges from the viewpoints of resource depletion and environmental burden. Now is the time to explore the future direction of plastics. Merely pursuing cost and performance improvements of materials will not solve impending social, waste management, and environmental issues. A holistic approach, which includes raw material

Fig. 1. Resilient and sustainable economic growth requires an integrated scheme among resource circulation, carbon neutrality, and social systems. This figure was prepared by the author (Kawashima).

conversion and efficient after-use treatment, is necessary.

Additionally, resource circulation alone will not realize resilient and sustainable economic growth. Instead a Circular Economy, which was initially suggested in Europe and involves resource circulation such as

maintenance, repair, and reuse/recycle, should be expressed by an integrated scheme among resource circulation, carbon neutrality, and social systems (Fig. 1). This transition will be accelerated by digitalization and knowledge sharing such as artificial intelligence and robotics.

Figure 2 shows a plastics circulation model. Current plastics circulation tends to focus on resource circulation. However, the era of business models only considering materials is over. Future fossil-based plastics and bioplastics models must encompass raw materials, plastic products, applications, and waste management.

After utilization of fossil-based plastics, circulation will not be feasible if the collection and sorting quality is insufficient or economically unsustainable. Similarly, circulation of bioplastics will not be realized if biomass prices become higher or the dependency on edible resources increases. Even with recycling, a resilient, robust, and sustainable business will not be achieved unless an economical competitive business

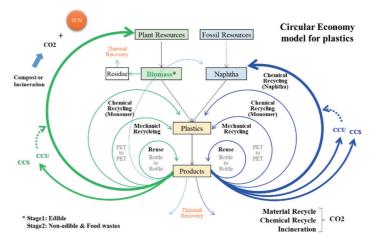


Fig. 2. Circular economy for plastics, including both fossil-based plastics and bioplastics. This figure was prepared by the author (Kawashima).

model is constructed considering the three elements described in Fig. 1. How can a circular economy model for plastics be strengthened? One way is to introduce new perspectives such as digital technologies and collaborating with other industries such as agriculture and CCUS.

A circular plastics economy is analogous to blood vessels in which linear flows from raw materials to products (Fig. 2, black lines) correspond to arteries, and circular arcs from products to various circulations (blue and green lines) correspond to veins. The future direction for plastics should include a circulating value chain. Similar to the harmonious relationship between arteries and veins in blood vessels, the venous industry should be strengthened in order to provide value to be sufficiently linked to the arterial industry.

Reference:

1) N. Kawashima, T. Yagi, K. Kojima, Macromolecular Materials and Engineering 1900383 (2019). https://doi.org/10.1002/mame.201900383

Curriculum Vitae

Nobuyuki Kawashima holds a Masters' degree from the School of Science, Osaka University where he majored in organic chemistry. After joining Mitsui Chemicals in 1979, he worked in biochemistry and molecular biology at the Central Research Lab and the City of Hope National Medical Center in California. From 1990–2009, he focused on new business developments, including polylactic acid. He served as the Executive Director and the Secretary General of the Chemical Society of Japan from 2009–2016. Currently, he is the Chair of Energy and Climate Change Leadership Group, ICCA.

IX-13-CLK02

Ceramic Additive Manufacturing Technologies for Biomedical applications

*Hui-suk Yun^{1, 2}

¹Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea, ²University of Science & Technology (UST), Changwon, 51508, Republic of Korea

*<u>yuni@kims.re.kr</u>

Keywords: Additive manufacturing, 3D printing, Stereolithography, Material Extruding, Ceramics, Biomedical

3D printing, also called additive manufacturing (AM), is a fabrication process that used digital information from a computer-aided design file to stack 2D layers of various materials to produce a 3D object, without requiring any part-specific tooling. AM technologies have attracted much attention in various fields such as biomedical industry, automotive, aerospace, consumer, and other industrial application. AM technology especially offers significant advantages in the medical industry as it permits the on-demand manufacture of low-volume or one-of-a-kind parts based on patient-specific needs. AM in the medical industry, both actual and potential, can be organized into several broad categories, including tissue and organ fabrication, customized prosthetics, implants, anatomical models, and pharmaceuticals.

Synthetic materials that are clinically favored for bone tissue regeneration are mainly those based on bioceramics due to the chemical similarity of bioceramics to the mineral phase of bone. Nevertheless, the development of ceramics AM technology has been very slow when compared with other materials, due largely to the difficulty and complexity of the fabrication process, i.e. ceramics generally require both debinding and sintering steps after printing, which can lead to deformation and unstable mechanical properties of the printed 3D structure. However, successful cases for commercialization have been reported recently, and several new technologies now appear to overcome the limitations of ceramics AM.

Our group has developed a novel streolithography based AM system, which has been designed specifically to overcome the complications of typical vat-type stereolithography system. The fabrication system and processing has been successfully optimized for various types of materials for fine control over the end product. We could co-print multi-component in one structure using less amount of ceramic slurry with high resource efficiency. We have confirmed multi-material printability of both the functionally graded material (FGM) structures and the core-shell structure. We can expect various applications of our new technology in medical fields. For example, possibility of producing FGM structure using AM technique will make us possible to fabricate custom-made dental crown which can design not only controlling shape but also adjusting both color gradation and transparency. Possibility of fabricating core-shell structure will provide a chance to us for designing multi-functional medical device. Our group also has suggested unique ceramic AM process for creation of bioceramic scaffolds in bone tissue regeneration without sintering, to enhance the biofunctionality of scaffolds which retaining mechanical strength. Mechanical stability of the bioceramic scaffold was achieved by adapting a self-setting reaction after material extruding based AM process rather than using a sintering process. Both final crystal state and biodegradability of scaffolds were also controlled by adjusting self-setting reaction. This process could be applied to fabricate various types of bioceramic scaffolds with biofunctional materials, such as osteoblast cells, drugs, biomarkers, and proteins, thereby providing highly functional scaffolds for effective bone tissue regeneration. We believe that this new technology may provide big turning point to overcome limitation of traditional ceramic forming process.

Dr. Hui-Suk Yun Korea Institute of Materials Science, Korea

Hui-Suk Yun has a Ph. D. on Materials Science Engineering from the University of Tokyo, Japan. She completed her post doc research at National Institute of Advanced Industrial Science and Technology (AIST, Japan) and then worked as a lecturer at the Consolidated Research Institute for Advanced Science and Medical Care at Waseda University, Japan. She is presently working as a principal researcher of Powder and Ceramics Division at Korea Institute of Materials Science (KIMS) and is a professor of Department of Materials Science in University of Science & Technology (UST). She is also working as a R&D Planner of Directorate for National Science and Engineering Programs at National Research Foundation of Korea. Her research field includes the nanoporous materials for both energy- and bio-applications, bioceramics, ceramic additive manufacturing (3D printing) systems & processes, and tissue engineering.

Cluster A Fundamentals for Materials

Symposium

- A-1 Local Atomic Structure Analysis on the Active Center of Functional Materials
- A-2 Hydrogen in Functional Materials
- A-3 Recent Advances in Computational Materials Science: Bridging Computations and Experiments
- A-4 Neutrons for Materials Research

December 11–12, 2019 – Symposium A-1

Local Atomic Structure Analysis on the Active Center of Functional Materials

Organizers

Hiroshi DAIMON (Nara Institute of Science and Technology) Kouichi HAYASHI (Nagoya Institute of Technology) Phil Woodruf (University of Warwick) Ian McNulty (MAX IV)

December 11, 2019					
Oral Session 1					
Time 9:00-11:20	Room Mont-5				

Chairperson Hiroshi DAIMON

A1-11-I01 Invited

9:00-9:30

Observing Switching of Ferroelectric Materials by **Operando Photoelectron Diffraction**

Matthias MUNTWILER¹, Juraj KREMPASKY¹, Hugo DIL^{1,2} ¹Paul Scherrer Institut, ²Ecole Polytechnique Fédérale de Lausanne

A1-11-I02 Invited

9:30-10:00

Holography with Electrons at High Kinetic Energies: Chemical Selective Imaging of Structures at and below Surfaces

Carsten WESTPHAL **TU Dortmund**

A1-11-003

10:00-10:20

Atomic image reconstruction from x-ray fluorescence holography and photoelectron holography

Tomohiro MATSUSHITA^{1,2}, Takayuki MURO¹, Naohisa HAPPO³, Koichi HAYASHI²

¹Japan Synchrotron Radiation Research Institute, ²Nara Institute of Science and Technology, ³Hiroshima City University, ⁴Nagoya Institute of Technology

A1-11-004

10:20-10:40

Pressure Driven Superconductivity in Topological Insulators

Yoshihiro KUBOZONO

Research Institute for Interdisciplinary Science, Okayama University

A1-11-005

10:40-11:00

Theory of resonant Auger electron diffraction for active site characterization

Peter KRÜGER¹, Godeung PARK¹, Fumihiko MATSUl² ¹Chiba University, ²Institute for Molecular Science

A1-11-006

Analyses of 3D Atomic Arrangements of Dopants in Si Crystal Using Spectro-photoelectron Holography

Kazuo TSUTSUI¹, Kotaro NATORI¹, Tatsuhiro OGAWA¹, Takayuki MURO², Tomohiro MATSUSHITA², Yoshitada MORIKAWA³, Takuya HOSHII¹, Kuniyuki KAKUSHIMA¹, Hitoshi WAKABAYASHI¹, Kouichi HAYASHI⁴, Fumihiko MATSUI⁵, Toyohiko KINOSHITA² ¹Tokyo Institute of Technology, ²Japan Synchrotron Radiation Research Institute, ³Osaka University, ⁴Nagoya Institute of Technology, ⁵Institute of Molecular Science

December 11, 2019 -

Oral Session 2					
Time 14:00-16:00 Room Mont-5					
Chairperson Yoshitada MORIKAWA					
A1-11-I07	►Invited	14:00-14:30			
at the local Karina MO	RGENSTERN	restructuring investigated			
A1-11-108	ersität Bochum ►Invited	14:30-15:00			
	Rh1/Fe304 Single	CO Binding in Model Ir1/ -Atom Catalysts			

A1-11-009

15:00-15:20

11:00-11:20

Concerted Catalysis of Designed Active Sites on Solid Surface for Highly Efficient Organic Synthesis

Ken MOTOKURA¹, Hiroto NODA¹, Yusuke WAKABAYASHI², Hiroo TAJIRI³, Kyogo MAEDA¹, Marika IKEDA¹, Wang-Jae CHUN⁴

¹Tokyo Institute of Technology, ²Tohoku University,

³Japan Synchrotron Radiation Research Institute/SPring-8, ⁴International Christian University

A1-11-010

15:20-15:40

Determining the dopant site structure in a Rh:SrTiO₃

photocatalyst by x-ray fluorescence holography Mikk LIPPMAA

University of Tokyo

A1-11-011

15:40-16:00

Middle-range ordering of multi-quantum well (In_{0.1}Ga_{0.9}N/ GaN)₂₀ grown on c-face Sapphire Substrate

Tomoaki KAWAMURA¹, Koichi HAYASHI², Munehiko MIYANO¹, Atsushi SAKAKI¹, Akihide ICHIKAWA¹, Jun NAKAMURA³ ¹Nichia Corporation, ²Nagoya Institute of Technology, ³The University of Electro-Communications

A1-12-I01 Invited

The atomic and electronic structure of two-dimensional oxide quasicrystals

<u>Stefan FÖRSTER</u>¹, Sebastian SCHENK¹, Eva Maria ZOLLNER¹, Cheng-Tien CHIANG¹, Christian TUSCHE^{2,3}, Wolf WIDDRA^{1,2} ¹Martin-Luther-Universität Halle-Wittenberg, ²Max-Planck-Insitut für Mikrostrukturphysik, ³Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich

A1-12-I02 Invited

9:30-10:00

Novel 2D Artificial Forms of Elemental Si, Ge, Sn, and Pb : From Silicene to Plumbene

<u>Guy LE LAY</u> Aix-Marseille University

A1-12-003

10:00-10:20

Graphene's Latest Cousin: Plumbene Epitaxial Growth on a "Nano WaterCube"

<u>Junji YUHARA</u> Nagoya University

A1-12-004

10:20-10:40

Nanocrystal Dynamics using Time-resolved Diffracted X-ray Blinking

YUJI SASAKI^{1,2,3}, M. KURAMOCHI^{1,2}, H. SEKIGUCHI³ ¹The University of Tokyo, ²Operand OIL, National Institute of Advanced Industrial Science & Technology, ³SPring-8/ Japan Synchrotron Radiation Research Institute

A1-12-005

10:40-11:00

Single-atom Dispersion of Platinum on Graphene using Plasma Sputtering

<u>Kazutoshi GOHARA</u>, Kenji YAMAZAKI Hokkaido University

A1-12-006

11:00-11:20

High-speed X-Ray Reciprocal Space Mapping for Dynamics of Molecular Beam Epitaxy

<u>Masamitu TAKAHASI</u>¹, Wolfgang VOEGELI², Etsuo ARAKAWA², Tetsuro SHIRASAWA³, Takuo SASAKI¹, Tomohiro YAMAGUCHI⁴, Tadashi MATSUSHITA⁵

¹National Institutes for Quantum and Radiological Science and Technology, ²Tokyo Gakugei University, ³National Institute of Advanced Industrial Science and Technology, ⁴Kogakuin University, ⁵High-Energy Accelerator Research Organization

Oral Session 5						
Π	ime 14:00-15:50	Room	Trade-1			
Chairperson Tomohiro MATSUSHITA						
44 40 107				1 4 0 0 1 4 0 0		
A1-12-I07	Invited			14:00-14:30		
Large-scale DET study of complex papo-structured						

December 12, 2019 -

Large-scale DFT study of complex nano-structured materials with the CONQUEST code

<u>Tsuyoshi MIYAZAKI</u> National Institute for Materials Science (NIMS)

A1-12-008

Carrier Transport Calculations of Organic Semiconductors with Static and Dynamic Disorder <u>Nobuhiko KOBAYASHI</u>¹, Hiroyuki ISHII¹, Kenji HIROSE² ¹University of Tsukuba, ²NEC

University of Tsukuba,

A1-12-009

First-principles Theoretical Study on Electronically and Catalytically Active Sites at Graphene

<u>Yoshitada MORIKAWA</u>^{1,3}, Sasfan Arman WELLA^{1,2}, Fahdzi MUTTAQIEN¹, Suprijadi HARYONO², Kouji INAGAKI^{1,3}, Yuji HAMAMOTO^{1,3}, Ikutaro HAMADA^{1,3}

¹Osaka University, ²Bandung Institute of Technology, ³ESICB, Kyoto University

A1-12-010

Statistical and Density-Functional Analysis of the Effect of Heme Porphyrin Distortion in Heme Proteins

<u>Yu TAKANO^{1,2}</u>, Yusuke KANEMATSU¹, Hiroko X. KONDO^{1,3}, Yasuhiro IMADA²

¹Hiroshima City University, ²Osaka University, ³Kitami Institute of Technology

A1-12-011

3D atomic-resolution holography around non-periodic active atoms

Hiroshi DAIMON

Toyota Physical and Chemical Research Institute

- December 12, 2019 -

Poster Session

Time 16:30-18:00 Room Trade-0

A1-12-P01

Valence-selective x-ray fluorescence holographic study of YbInCu₄ valence transition material

Shinya HOSOKAWA¹, Naohisa HAPPO², Kouichi HAYASHI³, Koji KIMURA³, Tomohiro MATSUSHITA⁴, Jens Rüdiger STELLHORN¹, Masaichiro MIZUMAKI⁴, Motohiro SUZUKI⁴, Hitoshi SATO⁵, Koichi HIRAOKA⁶ ¹Kumamoto University, ²Hiroshima City University, ³Nagoya Institute of Technology, ⁴JASRI, ⁵Hiroshima University, ⁶Ehime University

14:30-14:50

14:50-15:10

15:10-15:30

15:30-15:50

The molecular dynamics simulation on the mechanical properties of Ni glass with external pressure

Liwu JIANG, Peng SHI, Chuanhui ZHANG University of Science and Technology Beijing

A1-12-P03

Spatiotemporal pattern of graphene ripple structure measured using aberration corrected TEM

<u>Yuhiro SEGAWA</u>, Kenji YAMAZAKI, Kazutoshi GOHARA Hokkaido University

A1-12-P04

In-situ observation of the motion of single metal atoms on graphene using aberration corrected electron microscopy

<u>Akio SUZUTA</u>, Tsutomu UCHIDA, Kenji YAMAZAKI, Ryo SUGIMOTO, Kazutoshi GOHARA Hokkaido University

A1-12-P05

K-means clustering based support construction for ptychography

<u>Katsuya ICHIHASHI</u>¹, Shota NOGAWA¹, Yosuke MAEHARA^{1,2}, Hiroyuki SHIOYA¹, Jun YAMASAKI³, Kazutoshi GOHARA⁴ ¹Muroran Institute of Technology, ²Dowell Co., Ltd., ³Osaka University, ⁴Hokkaido University

A1-12-P06

Fast Surface X-ray Diffraction for Monitoring of Interface Phenomena

Tetsuro SHIRASAWA

National Institute of Advanced Industrial Science and Technology

A1-12-P07

Evaluation of charge transport property of ethynylenebridged anthracene oligomers

<u>Juanjuan ZHU</u>, Hironobu HAYASHI, Hiroko YAMADA Nara Institute of Science and Technology (NAIST)

A1-12-P08

Efficient Hydrosilylation Reaction using Designed Rh Site on Silica Surface

Kyogo MAEDA, Ken MOTOKURA Tokyo Institute of Technology

A1-12-P09

Fabrication of MoO₃ films on Si(001) by vapor deposition. Yuya YOSHIE, Shinta KOBAYASHI, Sakura TAKEDA

Nara Institute of Science and Technology

A1-12-P10

Status of photoelectron holography at SPring-8: Experimental setup for time- and space-resolved technique and application to individual atomic imaging of multiple dopant sites

Toyohiko KINOSHITA¹, Tomohiro MATSUSHITA¹, Takayuki MURO¹, Takuo OHKOCHI¹, Hitoshi OSAWA¹, Masaru SHIMOMURA², Fumihiko MATSUI³, Hiroyuki MATSUDA³, Kazuo TSUTSUI⁴, Munetaka TAGUCHI⁵, Kensei TERASHIMA⁶, Takanori WAKITA⁶, Takayoshi YOKOYA⁶, Hiroshi DAIMON⁷ ¹Japan Synchrotron Radiation Research Institute (JASRI), ²Department of Engineering, Shizuoka University, ³UVSOR, Institute for Molecular Science, ⁴Institute of Innovative Research, Tokyo Institute of Technology, ⁵Toshiba Nanoanalysis Corporation, ⁶Graduate School of Natural Science and Technology, Okayama University, ⁷Toyota Physical and Chemical Research Institute

A1-12-P11

Self-assembly Material Texture of β -Si_3N_4 /Stainless Steel Composites (2)—Effect of Kneading Process and Thermal Conductivity—

<u>Mariko TAKEDA</u>, Kazuya OKUBO, Yuka MIZUKAMI, Yoshihiro SATO, Satoko ABE, Ryota KOBAYASHI, Yue BAO, Fumio MUNAKATA Tokyo City University

A1-12-P12

Self-assembly Material Texture of β -Si₃N₄ /Stainless Steel Composites (3)—Multifractal Analysis of the Aggregated Morphology Texture—

<u>Mariko TAKEDA</u>, Kazuya OKUBO, Yuka MIZUKAMI, Yoshihiro SATO, Satoko ABE, Ryota KOBAYASHI, Yue BAO, Fumio MUNAKATA Tokyo City University

A1-12-P13

Investigation on Local Crystallographic Structure of $\epsilon\text{-}Ga_2O_3$ with High Dielectric Constant

<u>Daichi OKA</u>¹, Subaru YUSA¹, Koji KIMURA², Artoni Kevin Roquero ANG², Naohisa HAPPO³, Kouichi HAYASHI², Tomoteru FUKUMURA^{1,4}

¹Department of Chemistry, Graduate School of Science, Tohoku University, ²Department of Physical Science and Engineering, Nagoya Institute of Technology, ³Department of Computer and Network Engineering, Hiroshima City University, ⁴WPI Advanced Institute for Materials Research and Core Research Cluster, Tohoku University

A1-12-P14

Synthesis and characterization of large acenes by using on-surface synthesis

Hironobu HAYASHI, Hiroko YAMADA Nara Institute of Science and Technology

Analysis of Active Species in Molecular Vanadium Catalysis by Solution XAS Analysis

Kotohiro NOMURA

Tokyo Metropolitan University

A1-12-P16

Improved Phase Imaging by Electron Diffractive Imaging

<u>Jun YAMASAKI</u>^{1,2}, Yuki SHIMAOKA¹, Hirokazu SASAKI³ ¹Osaka University, ²Nagoya University, ³Furukawa Electric Co., Ltd

A1-12-P17

Benchmark Study on Bond Dissociation Energies for Large Systems

<u>Toru SAITO</u>, Hiroki KAMBARA, Seiya YAMAMOTO, Yu TAKANO Hiroshima City University

A1-12-P18

Dehydrogenative Arene Coupling of Dimethyl Phthalate: The Role of Pd and Cu Catalysts

Masafumi HIRANO¹, Yuki KANAZAWA¹, Takato MITSUDOME², Kousuke SANO¹ ¹Tokyo University of A & T, ²Osaka University

A1-12-P19

Band Alignment of Lattice-Matched $ZnSnAs_2/InP$ Heterostructures

<u>Munetaka TAGUCHI</u>¹, Naomi KURIHARA¹, Teruhiko SAZE¹, Kei KIYOKAWA¹, Hitoshi SATO³, Naotaka UCHITOMI², Hiroto OOMAE²

¹Toshiba Nanoanalysis Corporation, ²Nagaoka University of Technology, ³Hiroshima University

A1-12-P20

Formic Acid Adsorption and Decomposition on the Cu(111) Surface : Monomeric and Polymeric Structures Study

<u>Septia Eka Marsha PUTRA</u>¹, Fahdzi MUTTAQIEN¹, Yuji HAMAMOTO¹², Kouji INAGAKI¹², Ikutaro HAMADA¹², Yoshitada MORIKAWA^{1,2,3}

¹Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, ³Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University

A1-12-P21

Pressure Dependence of Superconductivity in \mbox{SrIr}_2 and \mbox{BaIr}_2

<u>Huan Ll</u> Okayama University

A1-12-P22

Revealing the effect of Co loading on the morphology and activity of Co/Co_{1-x-y}Al_{2+x}O₄ catalysts for dry reforming of methane

<u>Yee Jie WONG</u>^{1,2}, Mei Kee KOH², Satoshi ICHIKAWA¹, Yoshitada MORIKAWA¹, Abdul Rahman MOHAMED² ¹Osaka University, ²Universiti Sains Malaysia

A1-12-P23

Preparation and Characterization of Superconducting $Ba_{1,x}M_xTi_2Sb_2O$ (M: Na, K, Rb and Cs)

Yanan WANG Okayama University

A1-12-P24

Structural Isomerization of Phosphine-Protected Metal Clusters Induced by Polyoxometalates

<u>Yu FUJIKI</u>¹, Tomoki MATSUYAMA¹, Hikaru TAKAYA², Nobuhiro YASUDA³, Naoki NAKATANI¹, Jun HIRAYAMA⁴, Seiji YAMAZOE^{1,4,5}

¹School of Science, Tokyo Metropolitan University, ²Institute for Chemical Research, Kyoto University, ³Japan Synchrotron Radiation Research Institute, ⁴Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, ⁵Core Research for Evolutional Science and Technology, Japan Science and Technology Agency

A1-12-P25

First principles study for electronic structure of Nitrogen-doped TiO₂(B)

Tomoki YUYAMA¹, Carla BITTENCOURT², Peter KRÜGER¹ ¹Chiba University, ²University of Mons

A1-12-P26

Comparative and Systematic Study of Doping Technology for 2D-Sputtered MoS₂ Film

<u>Takuya HAMADA</u>, Shimpei YAMAGUCHI, Taiga HORIGUCHI, Kuniyuki KAKUSHIMA, Kazuo TSUTSUI, Hitoshi WAKABAYASHI Tokyo Institute of Technology

A1-12-P27

X-ray Fluorescence Holographic Imaging of Iron Environments in Heme Proteins

<u>Ayana SATO-TOMITA</u>

Jichi Medical University

A1-12-P28

- 103 -

QM/MM study of the ATPase mechanism of F-actin

<u>Yusuke KANEMATSU</u>¹, Yu TAKANO¹, Shuichi TAKEDA², Ryotaro KOIKE², Motonori OTA², Yuichiro MAEDA² ¹Hiroshima City University, ²Nagoya University

Self-assembly Material Texture of β -Si₃N₄ /Stainless Steel Composites (1)–Effect of Firing Process on the Formation of Agglomerated Texture–

Masashi KOGA, Mariko TAKEDA, Kazuya OKUBO, Yuka MIZUKAMI, Yoshihiro SATO, Satoko ABE, Ryota KOBAYASHI, Yue BAO, Fumio MUNAKATA Tokyo City University

A1-12-P30

Study of graphene precipitation from Ni catalyst using in-situ X-ray diffraction measurement - Cooling rate dependence -

<u>Jumpei YAMADA</u>, Yuki UEDA, Daichi YAMAMOTO, Takahiro MARUYAMA, Shigeya NARITSUKA Meijo University

A1-12-P31

Local Dynamics of bio-soft materials using synchrotron radiation X-ray and nanocrystals

Hiroshi SEKIGUCHI¹, Yuji C. SASAKI²

¹Japan Synchrotron Radiation Research Institute, ²The University of Tokyo

A1-12-P32

Modification of graphite energy analyzer for light elements on X-ray fluorescence holography

<u>Naohisa HAPPO</u>¹, Atsushi KUBOTA¹, Tomohiro MATSUSHITA², Shinya HOSOKAWA³, Koji KIMURA⁴, Kouichi HAYASHI⁴ ¹Hiroshima City University, ²Japan Synchrotron Radiation Research Institute, ³Kumamoto University, ⁴Nagoya Institute of Technology

A1-12-P33

Observation of doping effect in Sm doped RB_6 (R: rare earth) by white neutron holography

<u>Shoichi UECH1¹</u>, Yuki KANAZAWA¹, Kazuya SUGIMOTO¹, Takayoshi YAMAMOTO¹, Kenji OHOYAMA¹, Naohisa HAPPO², Koichi HAYASHI³, Masahide HARADA⁴, Kenichi OIKAWA⁴, Yasuhiro INAMURA⁴, Wataru MATSUHRA¹, Fumitoshi IGA¹, Youhei FUKUMOTO¹

¹Ibaraki University, ²Hiroshima City University, ³Nagoya Institute of Technology, ⁴J-PARC Center

A1-12-P34

Determination of dopant position of thermoelectric material B-doped Mg₂Si by white neutron holography

<u>Kazuya SUGIMOTO</u>¹, Syouichi UECHI¹, Yuki KANAZAWA¹, Yohei FUKUMOTO¹, Takayoshi YAMAMOTO¹, Kenji OHOYAMA¹, Kouichi HAYASHI², Naohisa HAPPO³, Masahide HARADA⁴, Kenichi OIKAWA⁴, Yasuhiro INAMURA⁴, Kei HAYASHI⁵, Wataru SAITOU⁵, Yuzuru MIYAZAKI⁵

¹Ibaraki University, ²Nagoya Institute of Technology, ³Hiroshima City University, ⁴Materials and Life Science Division, J-PARC Center, ⁵Tohoku University

A1-12-P35

Valence sensitive X-ray fluorescence holography of the protein complex Photosystem II

<u>Koichi HAYASHI</u>¹, Artoni Kevin Roquero ANG¹, Yasushi UMENA², Ayana SATO-TOMITA³, Naoya SHIBAYAMA³, Yuji SASAKI⁴, Naohisa HAPPO⁵, Koji KIMURA¹ ¹Nagoya Institute of Technology, ²Okayama University, ³Jichi Medical University, ⁴The University of Tokyo, ⁵Hiroshima City University

A1-12-P36

Atomic and electronic structure analysis of metallic nanoparticle catalysts by large-scale DFT calculations

<u>Ayako NAKATA</u>, Tsuyoshi MIYAZAKI National Institute for Materials Science

A1-12-P37

Active/Inactive Dopant-site in Boron-doped Diamond in Diamond Power Device

Yukako KATO

National Institute of Advanced Industrial Science and Technology

A1-12-P38

Structural Evolution During Photo- and Thermal Conversion of Organic Semiconductor Precursor Thin Films

Wolfgang VOEGELI¹, Yuta TAMEIKE¹, Atsushi YAMAGUCHI¹, Ryoma TANAKA¹, Etsuo ARAKAWA¹, Toshio TAKAHASHI¹, Tetsuroh SHIRASAWA², Mitsuharu SUZUKI³, Hiroko YAMADA⁴ ¹Tokyo Gakugei Univ., ²AIST, ³Osaka Univ., ⁴NAIST

A1-12-P39

Convergent-Beam Optics for Time-Resolved X-Ray Diffraction From Thin Films and Surfaces

<u>Wolfgang VOEGELI</u>¹, Masamitu TAKAHASI², Takuo SASAKI², Seiji FUJIKAWA², Tetsuroh SHIRASAWA³, Etsuo ARAKAWA¹, Tadashi MATSUSHITA⁴ ¹Tokyo Gakugei Univ., ²QST, ³AIST, ⁴KEK

A1-12-P40

A Plan of Photoelectron Holography at MAX IV

<u>Yusuke HASHIMOTO</u>^{1,2}, Balasubramanian THIAGARAJAN², Conny SÅTHE², Oscar TJERNBERG¹ ¹KTH Royal Institute of Technology, ²Max IV Laboratory

A1-12-P41

Acceleration of Atomic Image Reconstruction from X-ray Fluorescence Holograms on Multiple Platforms

<u>Atsushi KUBOTA</u>¹, Tomohiro HARA¹, Tomohiro MATSUSHITA², Naohisa HAPPO¹, Tetsuo HIRONAKA¹ ¹Hiroshima City University, ²Japan Synchrotron Radiation Research Institute

Local Atomic Arrangement near Co and Ni in an Aged $AI_{0.3}$ CrFeCoNi High Entropy Alloy

<u>Jumpei NIKI</u>¹, Tatsuya HAYASHI¹, Tokujiro YAMAMOTO¹, Naohisa HAPPO², Kouichi HAYASHI³, Koji KIMURA³, Shinya HOSOKAWA⁴, Hiroo TAJIRI⁵

¹Utsunomiya University, ²Hiroshima City University, ³Nagoya Institute of Technology, ⁴Kumamoto University, ⁵Japan Synchrotron Radiation Research Institute

A1-12-P43

Time Dependence of Vickers Hardness and X-ray Fluorescence Holograms of an Al_{0.3}CrFeCoNi High Entropy Alloy

<u>Tokujiro YAMAMOTO</u>¹, Jumpei NIKI¹, Tatsuya HAYASHI¹, Naohisa HAPPO², Kouichi HAYASHI³, Koji KIMURA³, Shinya HOSOKAWA⁴, Hiroo TAJIRI⁵

¹Utsunomiya University, ²Hiroshima City University, ³Nagoya Institute of Technology, ⁴Kumamoto University, ⁵Japan Synchrotron Radiation Research Institute

A1-12-P44

A Middle Energy-bandwidth Crystal Monochromator using Asymmetric Geometry for High-flux Synchrotron X-ray Diffraction

<u>Hiroo TAJIRI</u>¹, Hiroshi YAMAZAKI¹, Haruhiko OHASHI¹, Shunji GOTO¹, Osami SAKATA², Tetsuya ISHIKAWA³ ¹Japan Synchrotron Radiation Research Institute, ²National Institute for Materials Science, ³RIKEN SPring-8 Center

A1-12-P45

Development of High-Energy-Resolution Display-type Analyzer

<u>Hiroshi DAIMON</u>¹, Hiroyuki MATSUDA¹, Hiroki MOMONO¹, László TÓTH²

¹Nara Institute of Science and Technology (NAIST), ²University of Debrecen, ³Toyota Physical and Chemical Research Institute

A1-12-P46

X-ray Fluorescence Holography Investigation on Sn in Sn: β -Ga₂O₃ widegap oxide semiconductor

Kazushi MIKI¹, N HAPPO², K KIMURA³, K SASAKI⁴, Y TANG¹, K NAWATA¹, Y MAEDA¹, S KITAMURA¹, H OZAKI³, H HISATUNE², R YAMAGUCHI², H TAJIRI⁵, S YAMAKOSHI⁶, A KURAMATA⁴

¹Univ. Hyogo, ²Hiroshima City Univ., ³Nagoya Institute of Technology, ⁴Novel Crystal Technology, Inc., ⁵JASRI, ⁶Tamura Corp.

A1-12-P47

Experimental Investigation of the Local Atomic Structure in Decagonal Quasicrystals by X-Ray Fluorescence Holography

Jens STELLHORN DESY

A1-12-P48

Molecular dynamics study of structural fluctuations in CDR-H3 of anti-HIV antibodies PG9 and PG16

NAOKI TANABE¹, RYO KIRIBAYASI¹, Hiroko.X KONDO², DAISUKE KURODA³, TORU SAITO¹, JIRO KOHDA¹, AKIMITSU KUGIMIYA¹, YASUHISA NAKANO¹, KOUHEI TSUMOTO^{3,4}, YU TAKANO¹

¹Graduate School of Information Sciences, Hiroshima City University, ²Faculty of Engineering, Kitami Institute of Technology, ³Institute of Medical science, the University of Tokyo, ⁴Graduate School of Engineering, the University of Tokyo

December 12, 2019 - December 12–13, 2019 – **Oral Session 4** Symposium A-2 Time 9:30-12:15 Room Ken-2 Hydrogen in Functional Materials Chairpersons Hiroshi KAGEYAMA, Tom AUTREY Organizers A2-12-K01 ► Keynote 9:30-10:15 Shin-ichi ORIMO (Tohoku University, Japan) Enabling Energy Technologies Using Hydride Materials Hidenori HIRAMATSU (Tokyo Institute of Technology, Japan) Rana MOHTADI Bjørn C. HAUBACK (Institute for Energy Technology, Norway) Truls NORBY (University of Oslo, Norway) TOYOTA RESEARCH INSTITUTE OF NORTH AMERICA Chris G. Van de WALLE (University of California, Santa Barbara, USA) A2-12-I02 ►Invited 10:15-10:45 Sponsors Complex Hydrides for Energy Device Research Shin-ichi ORIMO Tohoku University A2-12-003 10:45-11:05 Molecular Dynamics Study of Fast Li⁺ Ion Transport in closo-Boranes. 子科学校式会社 Kartik SAU¹, Tamio IKESHOJI^{1,2}, Shigeyuki TAKAGI³, Kazuto AKAGI³, SHIN-ICHI ORIMO^{2,3}, Sangryun KIM³ ESCO.Ltd ¹AIST-TohokuU Mathematics for Advanced Materials-OIL, ²IMR, Tohoku University, ³AIMR, Tohoku University Hydrogenomics Break "Hydrogenomics" Grant- in-Aid for Scientific Reserch on Innovative Areas, MEXT 11:05-11:15 A2-12-I04 ►Invited 11:15-11:45 Hydride ion conduction INNOVATOR IN ELECTRONICS Murata Manufacturing Co., Ltd. Truls NORBY, Xin LIU, Tor S. BJØRHEIM, Reidar HAUGSRUD University of Oslo A2-12-I05 ►Invited 11:45-12:15 Nissan Chemical Corporation Size Flexibility of Hydride Anion: Structure and Property Control SOSHIN 双信電機株式会社 Hiroshi KAGEYAMA SOSHIN ELECTRIC CO., LTD. Kyoto University SOSHIN ELECTRIC CO., LTD December 12, 2019 **Oral Session 5** TAIYO YUDEN Time 14:00-16:30 Room Ken-2 TAIYO YUDEN CO., LTD Chairpersons Anderson JANOTTI, Truls NORBY 株式会社 東京インスツルメンツ **TOKYO INSTRUMENTS, INC.** A2-12-006 14:00-14:20 TOKYO Instruments, Inc H⁻Conduction in the Rock-Salt Layer of K₂NiF₄-Type Oxyhydrides Genki KOBAYASHI^{1,2}, Fumitaka TAKEIRI^{1,2}, Akihiro WATANABE^{1,3}, Hag NAWAZ^{1,2}, Akihide KUWABARA⁴, ULVAC,Inc.

¹Institute for Molecular Science, ²SOKENDAI, ³Tokyo Institute of Technology, ⁴Japan Fine Ceramics Center, ⁵High Energy Accelerator Research Organization

Yumiko IMAI¹, Nur Ika Puji AYU^{1,5}, Masao YONEMURA⁵,

Ryoji KANNO³

10:45-11:05

11:05-11:25

11:25-11:45

Characteristic H⁻ Ion Conduction in Oxygen-Substituted Lanthanum Trihydride

Soshi IIMURA¹, Keiga FUKUI¹, Tomofumi TADA¹, Satoru FUJITSU¹, Masato SASASE¹, Hiromu TAMATSUKURI², Takashi HONDA², Kazutaka IKEDA², Toshiya OTOMO², Hideo HOSONO¹

¹Tokyo Institute of Technology, ²High Energy Accelerator Research Organization (KEK)

A2-12-008

14:40-15:00

Fast Hydride Ionic Conduction of Lanthanum Oxyhydride from First Principles Molecular Dynamics Simulation

Tomofumi TADA, Soshi IIMURA, Hideo HOSONO Tokyo Institute of Technology

A2-12-I09 Invited

15:10-15:40

Catalytic Properties of Hydrides in Aqueous Media Tom AUTREY

Pacific Northwest National Laboratory

A2-12-I10 ► Invited

15.40 - 16.10

Inorganic Nanomaterials to Achieve Efficient Electrochemical Hydrogenation for Energy Storage and Materials Conversions

Miho YAMAUCHI Kyushu University

A2-12-011

16.10-16.30

Hydrogen storage behaviors and application for ammonia synthesis of LnNiSi (Ln = La-Nd)

Hiroshi MIZOGUCHI¹, Sang-Won PARK¹, Kazuhisa KISHIDA¹, Masaaki KITANO¹, Junghwan KIM¹, Masato SASASE¹, Takashi HONDA², Kazutaka IKEDA², Toshiya OTOMO², Hideo HOSONO¹

¹Tokyo Institute of Technology, ²KEK

December 13, 2019 -

Oral Session 7

Room Ken-2 Time 9:30-11:45

Chairperson Miho YAMAUCHI

A2-13-K01 ► Keynote

Investigation on Defect Structures in Oxides with

Hydrogen Impurity Naoki OHASHI^{1,2,3}

¹National Institute for Materials Science, ²Tokyo Institute of Technology, ³Kyushu University

A2-13-I02 ► Invited

10:15-10:45

9:30-10:15

The hydrogen impurity in wide-band-gap oxides Anderson JANOTTI University of Delaware

A2-13-003

Structures and Electronic States of Hydrogen in Inorganic Semiconductors with Different Anions

Toshio KAMIYA, Xinyi HE, Zewen XIAO, Keisuke IDE, Takayoshi KATASE, Hideo HOSONO Tokyo Institute of Technology

A2-13-004

Hydrogen Doping in Ultra-widegap Amorphous Oxide Semiconductor, Amorphous Ga-O

Keisuke IDE^{1,2}, Yurika KASAI¹, Takayoshi KATASE^{1,3}, Hidenori HIRAMATSU^{1,2}, Hideo HOSONO^{1,2}, Toshio KAMIYA^{1,2} ¹Laboratory for Materials and Structures, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³PRESTO, Japan Science and Technology Agency

A2-13-005

Activation energy of hydrogen effusion of high performance TiO_x/SiO_x/c-Si heterocontacts

Kazuhiro GOTOH¹, Takeya MOCHIZUKI¹, Tomohiko HOJO², Yasuyoshi KUROKAWA¹, Eiji AKIYAMA², Noritaka USAMI¹ ¹Nagoya University, ²Tohoku University

December 13, 2019

Oral Session 8

Time 14:00-15:40 Room Ken-2

Chairperson Genki KOBAYASHI

A2-13-006

14:00-14:20

Kinetic Enhancement of Hydrogen Absorption by Pd through Surface Modification with Au

Shohei OGURA, Kazuhiro NAMBA, Koichi KATO, Katsuyuki FUKUTANI

Institute of Industrial Science, The University of Tokyo

A2-13-007

Caught in the Act: Hydrogen Bond at Work in Asymmetric Synthesis Monitored by Modulation-Excitation Infrared Spectroscopy

Nobutaka MAEDA, Miho YAMAUCHI

Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)

A2-13-008

Hydride Complexes with High Hydrogen Coordination and Their Novel Functionalities

Shigeyuki TAKAGI¹, Shin-ichi ORIMO^{1,2}

¹Institute for Materials Research, Tohoku University / Japan, ²WPI-Advanced Institute for Materials Research (AIMR), Tohoku University / Japan

Symposium A

- 107 -

14:20-14:40

14:40-15:00

15:00-15:20

High-pressure and high-temperature synthesis of novel hydrides

<u>Hiroyuki SAITOH</u>^{1,2}, Mai TANIKAMI^{1,2}, Akihiko MACHIDA¹, Tetsu WATANUKI^{1,2}, Toyoto SATO³, Shigeyuki TAKAGI³, Shin-ichi ORIMO^{3,4}, Kazutaka IKEDA⁴, Toshiya OTOMO⁴ ¹National Institutes for Quantum and Radiological Science and Technology, ²Graduate School of Material Science, Univ. of Hyogo, ³Institute for Materials Research, Tohoku University, ⁴WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, ⁵Institute of Materials Structure Science, High Energy Accelerator Research Organization

A2-13-010

A2-13-009

15:20-15:40

Magnetic structure of heavily hydrogen-substituted 1111-type LaMnPO_{1-x}H_x

<u>Satoru MATSUISHI</u>¹, Toshiki KATO¹, Tomohiro INOUE¹, Maxim AVDEEV², Yusuke NAMBU³

¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, ²Bragg Institute, Australian Nuclear Science and Technology Organization, ³Institute for Materials Research, Tohoku University

December 13, 2019

Oral Session 9

Time 16:30-17:30 Room Ken-2

Chairperson Hiroyuki SAITOH

A2-13-011

16:30-16:50

First-principles calculations of hydrogen-related reactions in polymer electrolyte fuel cell

<u>Yoshiyuki YAMAMOTO</u>, Lei YAN, Osamu SUGINO The Institute for Solid State Physics, The University of Tokyo

A2-13-012

16:50-17:10

Proton conduction on hydrated oxide surface for "electrolyte" of metal/oxide catalysts

 $\underline{\text{Ryuhei}\ \text{SATO}}^1,$ Yasushi SHIBUTA 1, Fuyuki SHIMOJO 2, Shu YAMAGUCHI 3

¹The University of Tokyo, ²Kumamoto University, ³National Institution for Academic Degrees and Quality Enhancement of Higher Education

A2-13-013

17:10-17:30

Sulfonated Poly(arylene perfluoroalkylene) Terpolymers as Proton Exchange Membranes

<u>Zhi LONG</u>, Junpei MIYAKE, Kenji MIYATAKE University of Yamanashi December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

A2-13-P01

Development of highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration ($\sim 1 \times 10^{16}$ atoms/ cm³) in thin-film samples

Hidenori HIRAMATSU¹, Taku HANNA¹, Isao SAKAGUCHI², Hideo HOSONO¹

¹Tokyo Institute of Technology, ²National Institute for Materials Science

A2-13-P02

Effective interaction for vanadium oxyhydrides

 $Sr_{n+1}V_nO_{2n+1}H_n$ (n = 1 and ∞): A constrained-RPA study <u>Masayuki OCHI</u>, Kazuhiko KUROKI Osaka University

A2-13-P03

Hydride ion in iron-based superconductors: Efficient electron dopant inducing high- $T_{\rm c}$ superconductivity and antiferromagnetism

Soshi IIMURA, Hideo HOSONO Tokyo Institute of Technology

A2-13-P04

Crystal Structures and Photochromic Reactions of Hydrogen-Bonding Diarylethene Crystals

Masakazu MORIMOTO Rikkyo University

A2-13-P05

Theoretical Study of Hydrogen/Deuterium Absorption Properties in Pd By Using Combined Plane Wave and Localized Basis Set Approach

<u>Takayoshi ISHIMOTO</u> Yokohama City University

A2-13-P06

Research on Ammine Complex of Metal Borohydrides as Functional Material

<u>Hiroki MIYAOKA</u>, Keita NAKAJIMA, Takayuki ICHIKAWA, Yoshitsugu KOJIMA Hiroshima University

A2-13-P07

Investigation of cathodic reaction of proton-conducting ceramics fuel cells by using model pattern electrodes

Takashi NAKAMURA¹, Katsuya NISHIDATE², Yuta KIMURA¹, Keiji YASHIRO³, Tatsuya KAWADA³, Yuichi MIKAMI⁴, Tomohiro KUROHA⁴, Yoichiro TSUJI⁴, Koji AMEZAWA¹ ¹IMRAM, Tohoku University, ²Dept. Mech. Sys. Eng., Grad. School of Engineering, Tohoku University, ³Grad. School of Environmental Studies, Tohoku University, ⁴Panasonic Corp.

A2-13-P08

Theoretical study of H/D isotope effect on phase transition of hydrogen-bonded organic conductor $\kappa\text{-}H_3(\text{Cat-EDT-TTF})_2$

Masanori TACHIKAWA Yokohama City University

A2-13-P09

Control of electrical properties on transition metal oxides via protonic-electronic coupling

<u>Hidekazu TANAKA</u>, Azusa. N. HATTORI, Takashi YAMANAKA, Daiki KAWAMOTO, Keiichiro HAYASHI Osaka University

A2-13-P10

Local electronic structure of interstitial hydrogen in manganese dioxide

<u>Hirotaka OKABE¹, Ryosuke KADONO¹, Masatoshi HIRAISHI¹, Akihiro KODA¹, Soshi TAKESHITA¹, Kenji KOJIMA², Ichihiro YAMAUCHI³, Hirohiko SATO⁴</u>

¹High Energy Accelerator Research Organization (KEK), ²TRIUMF, ³Saga University, ⁴Chuo University

A2-13-P11

Moved

A2-13-P12

Lanthanide Oxyhydrides supported Ruthenium catalysts for ammonia synthesis

<u>Masaaki KITANO</u>¹, Kayato OOYA¹, Keiga FUKUI¹, Soshi IIMURA¹, Tomofumi TADA¹, Hideo HOSONO¹ ¹Tokyo Institute of Technology, ²Precursory Research for Embryonic Science and Technology

A2-13-P13

Heavy Hydrogen-doping of an Iron-based Superconductor SmFeAsO Epitaxial Film

<u>Jumpei MATSUMOTO</u>¹, Kota HANZAWA¹, Masato SASASE², Silvia HAINDL³, Takayoshi KATASE¹, Hidenori HIRAMATSU^{1,2}, Hideo HOSONO^{1,2}

¹Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology

A2-13-P14

Carbon Doping of Hydrogen Boride Sheet Reduces H₂ Release Temperature

Takahiro KONDO^{1,2}, Yoshitaka FUJIMOTO³, Ryota ISHIBIKI⁴, Taiga GOTO⁴, Shin-ichi ITO^{1,2}, Takeshi FUJITA⁵, Akiyasu YAMAMOTO^{2,6}, Susumu SAITO^{2,3}, Hideo HOSONO² ¹Faculty of Pure and Applied Sciences, University of Tsukuba, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³Department of Physics, Tokyo Institute of Technology, ⁴Graduate School of Pure and Applied Sciences, University of Tsukuba, ⁵School of Environmental Science and Engineering, Kochi University of Technology, ⁶Institute of Engineering, Tokyo University of Agriculture and Technology

A2-13-P15

Hydrogenated Borophene Shows Catalytic Activity as Solid Acid

Takahiro KONDO^{1,3}, Asahi FUJINO², Shin-ichi ITO^{1,3}, Taiga GOTO², Ryota ISHIBIKI², Junko N KONDO⁴, Tadahiro FUJITANI^{1,5}, Junji NAKAMURA¹, Hideo HOSONO³ ¹Faculty of Pure and Applied Sciences, University of Tsukuba, ²Graduate School of Pure and Applied Sciences, University of Tsukuba, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology, ⁴IIR, Tokyo Institute of Technology, ⁵Interdisciplinary Research Center, AIST

A2-13-P16

Fast H^- conduction in lanthanum oxyhydride $LaH_{3-2x}O_x$

<u>Keiga FUKUI</u>¹, Soshi IIMURA¹, Tomofumi TADA¹, Satoru FUJITSU¹, Masato SASASE¹, Hiromu TAMATSUKURI², Takashi HONDA², Kazutaka IKEDA², Toshiya OTOMO², Hideo HOSONO¹

¹MCES, Tokyo Institute of Technology, ²High Energy Accelerator Research Organization (KEK)

A2-13-P17

The role of anion order/disorder in the hydrideconductivity in LnHO

Hiroki UBUKATA¹, Thibault BROUX¹, Fumitaka TAKEIRI^{2,3}, Kazuki SHITARA³, Hiroki YAMASHITA¹, Akihide KUWABARA⁵, Genki KOBAYASHI^{2,3}, Hiroshi KAGEYAMA¹ ¹Kyoto University, ²Institute for Molecular Science, ³SOKENDAI (The Graduate University for Advanced Studies), ⁴Osaka University, ⁵Japan Fine Ceramics Center

A2-13-P18

Effect of cation size on hydride ion conduction in $LnSrLiH_2O_2(Ln = La, Pr, Nd, Sm, Gd)$ oxyhydrides

<u>Naoki MATSUI</u>¹, Yoyo HINUMA^{2,3}, Yuki IWASAKI¹, Kota SUZUKI¹, Jiang GUANGZHONG¹, Haq NAWAZ^{4,5}, Yumiko IMAI⁴, Masao YONEMURA⁶, Masaaki HIRAYAMA¹, Genki KOBAYASHI^{4,5}, Ryoji KANNO¹

¹Tokyo Institute of Technology, ²Chiba University, ³National Institute for Materials Science, ⁴Institute for Molecular Science, ⁵SOKENDAI (The Graduate University for Advanced Studies), ⁶High Energy Accelerator Research Organization (KEK)

A2-13-P19

Hydrogen Anion and Subgap States in Amorphous In-Ga-Zn-O Thin Films

<u>Joonho BANG</u>, Satoru MATSUISHI, Hideo HOSONO Tokyo Institute of Technology

A2-13-P20

Synthesis, local electronic structure and photoluminescence properties of rare earth-activated aluminate oxyhydride Sr₃AlO₄H.

<u>Tong WU</u>, Satoru MATSUISHI Tokyo Institute of Technology

A2-13-P21

Adsorption of CO_2 on Hydrogen Boride Sheets with H-vacancy Defects

<u>Taiga GOTO</u>¹, Ryota ISHIBIKI¹, Shin-ichi ITO^{2,3}, Hideo HOSONO², Takahiro KONDO³

¹Graduate School of Pure and Applied Sciences, University of Tsukuba, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³Faculty of Pure and Applied Sciences, University of Tsukuba

A2-13-P22

Structure and Electronic States Changes of Hydrogen Boride Sheets with Heating

<u>Ryota ISHIBIKI</u>¹, Iwao MATSUDA², Shin-ichi ITO^{3,4}, Hideo HOSONO³, Takahiro KONDO^{3,4}

¹Graduate school of Pure and Applied Sciences, University of Tsukuba, ²Institute for Solid State Physics, University of Tokyo, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology, ⁴Faculty of Pure and Applied Sciences, University of Tsukuba

A2-13-P23

Epitaxial growth of Ca₂NH thin films using reactive magnetron sputtering.

<u>Seoungmin CHON</u>¹, Shigeru KOBAYASHI¹, Kazunori NISHIO¹, Ryota SHIMIZU¹², Taro HITOSUGI¹ ¹Tokyo Institute of Technology, ²JST-PRESTO

A2-13-P24

Molecular Dynamics and Kinetic Monte Carlo Hybrid Method for Efficient Dynamics and Proton Conduction in Phosphoric Acid

<u>Albert ISKANDAROV</u>, Tomofumi TADA Materials Research Center for Element Strategy, Tokyo Institute of Technology

A2-13-P25

Light-induced Large Electrical Resistivity Reduction in Yttrium Oxy-hydride Epitaxial Thin Films

Yuya KOMATSU¹, Ryota SHIMIZU^{1,2}, Kazunori NISHIO¹, Masahiro MIYAUCHI¹, Markus WILDE³, Katsuyuki FUKUTANI³, Taro HITOSUGI¹ ¹Tokyo Institute of Technology, ²JST-PRESTO, ³Univ. of Tokyo

A2-13-P26

Passivation of Deep centers in Zinc Oxide Studied with Deep Level Transient Spectroscopy

Takeo OHSAWA National Institute for Materials Science

A2-13-P27

Photo-induced color centers creation in Sr_2LiSiO_4H oxyhydride

<u>Fauzin NAIMAH</u>, Tong WU, Asako ISHIKAWA, Satoru MATSUISHI Tokyo Institute of Technology

A2-13-P28

Low temperature synthesis of perovskite-type oxynitridehydride as a catalyst for ammonia synthesis

<u>Jun KUJIRAI</u>, Masaaki KITANO, Kiya OGASAWARA, Tomofumi TADA, Hideo HOSONO Tokyo Institute of Technology

December 11, 2019 —

Symposium A-3

Recent Advances in Computational Materials Science: Bridging Computations and Experiments

Organizers

Taisuke OZAKI (Institute for Solid State Physics, The University of Tokyo) Minoru OTANI (National Institute of Advanced Inductrial Science and Technology)

December 11, 2019 -

Oral Session 1

Time 9:00-11:35 Room Mont-2

Chairperson Taisuke OZAKI

Invited

9:00-9:40

Construction and exploitation of large ab initio data spaces to design materials with superior mechanical properties

Joerg NEUGEBAUER

Max-Planck-Institut fuer Eisenforschung

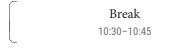
A3-11-002

A3-11-I01

9:40-10:05

A Prototype First-Principles Only Phase Diagram: Al-Ni

Theresa DAVEY, Nguyen-Dung TRAN, Arkapol SAENGDEEJING, Ying CHEN School of Engineering, Tohoku University


A3-11-003

10:05-10:30

Python Framework for Direct Coupling of First-Principles Calculation with Replica Exchange Monte Carlo Sampling of Ion Disorder in Solids

Shusuke KASAMATSU^{1,2}, Yuichi MOTOYAMA², Yoshiyuki YAMAMOTO², Kazuyoshi YOSHIMI², Taisuke OZAKI², Osamu SUGINO²

¹Yamagata University, ²University of Tokyo

A3-11-004

10:45-11:10

First-principles prediction of structural phase transition temperature of BaTiO₃ based on finite-temperature phonon calculation

Daisuke HIRAI¹, Sakyo HIROSE¹, Terumasa TADANO² ¹Murata Manufacturing Co., Ltd., ²National Institute for Materials Science

A3-11-005

Lattice thermal conductivity simulations by highdimensional neural network potentials

Emi MINAMITANI¹, Masayoshi OGURA², Satoshi WATANABE^{2,3}

¹Institute for Molecular Science, ²Department of Materials Engineering, the University of Tokyo, ³Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science

December 11, 2019

Oral Session 2

Time 14:00-15:55 Room Mont-2

Chairperson Minoru OTANI

A3-11-006

14:00-14:25

14:25-14:50

Insulator-Metal transition by non-adiabatic quantum lattice fluctuations

Norikazu TOMITA¹, Akira TAKAHASHI²

¹Yamagata University, ²Nagoya Institute of Technology

A3-11-007

Structure map for AB₂ type 2D monolayers by highthroughput DFT calculations

Masahiro FUKUDA¹, Jingning ZHANG², Yung-Ting LEE¹, Taisuke OZAKI¹

¹University of Tokyo, ²University of Science and Technology of China

Break

14:50-15:05

A3-11-008

Niobium oxide dihalides NbOX₂: a new family of twodimensional van der Waals layered materials with intrinsic ferroelectricity and antiferroelectricity Gaoyang GOU

Xi'an Jiaotong University

A3-11-009

15:30-15:55

15:05-15:30

Small Polarons in BaTiO₃: A First-Principles Study

Naoki TSUNODA¹, Yu KUMAGAI², Fumiyasu OBA^{1,2} ¹Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology

Symposium A

December 11, 2019 **Poster Session**

Time 19:00-20:30 Room Trade-0

A3-11-P01

High-throughput Force Field Calculation towards the Search for Fast Ion Conductive Materials

<u>Yasuhiro MIYAJI</u>¹, Kouki NAKANO¹, Naoto TANIBATA^{1,2}, Ryo KOBAYASHI^{1,3}, Masanobu NAKAYAMA^{1,2,3}

¹Nagoya Institute of Technology, ²Kyoto University ESICB of Elements Strategy Initiative for Catalysts and Battereis, ³MaDiS/CMi2, NIMS of National Institute for Materials Science

A3-11-P02

Theoretical Study of Singlet Exciton Fission in Organic Materials

Hiroyuki TAMURA The University of Tokyo

A3-11-P03

Temperature Dependent Grain Boundary Segregation in BCC-Fe - A Grand Canonical Monte Carlo - Molecular **Dynamics Hybrid Study**

Rodrigo Pinheiro CAMPOS¹, Shuhei SHINZATO², Akio ISHII², Shigenobu OGATA2;

¹School of Engineering Science, Osaka University, Osaka, 560-8531, Japan, ²Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan, ³Center for Elements Strategy Initiative for Structural Materials, Kyoto University, Kyoto, 606-8501, Japan

A3-11-P04

Dynamics of Rings and Polymer in Polyrotaxane Studied by Molecular Dynamics Simulations and Quasi-Elastic Neutron Scattering Experiments

<u>Yusuke YASUDA</u>¹, Yuta HIDAKA¹, Koichi MAYUMI¹, Takeshi YAMADA², Kazushi FUJIMOTO³, Susumu OKAZAKI³, Hideaki YOKOYAMA¹, Kohzo ITO¹

¹Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan, ²Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg., 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan, ³Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

A3-11-P05

Forecasting of IrO₃ Desorbability from Iridium Alloys by **First-Principles Study**

Insung SEO¹, Syunsuke YOKOTA², Yousuke IMAI², Yoshihiro GOHDA¹

¹Tokyo Institute of Technology, ²Ishifuku Metal Industry

A3-11-P06

Effects of Chemical Composition and Surface Reconstruction on Band Alignment of Perovskite Oxides

Ha-Jun SUNG¹, Yasuhide MOCHIZUKI¹, Fumiyasu OBA^{1,2} ¹Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, ²Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science

A3-11-P07

Ab Initio Local-Energy and Local-Stress Schemes and Application to Metallic Grain Boundaries

Masanori KOHYAMA¹, Zhuo XU¹, Shingo TANAKA¹, Yoshinori SHIIHARA²

¹National Institute of Advanced Industrial Science and Technology, ²Toyota Technological Institute

A3-11-P08

Construction of machine learning atomic potential for investigation of lattice defects in BCC iron

Hideki MORI¹, Taisuke OZAKI² ¹College of Industrial Technology, ²Institute for Solid State Physics, University of Tokyo

A3-11-P09

Ab initio approaches for Green's functions of materials using coupled-cluster singles doubles (CCSD)

Taichi KOSUGI, Yuichiro MATSUSHITA

Tokyo Institute of Technology

A3-11-P10

Stability of Self-Trapped Holes in Ga₂O₃ Polymorphs

Tomoya GAKE¹, Yu KUMAGAI², Fumiyasu OBA¹ ¹Laboratory for Materials and Structures. Institute of Innovative Research, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology

A3-11-P11

First Principles Study For A Quantitative Characterization Of Electrides Based On Many-Body Hamiltonian

Shu KANNO¹, Tomofumi TADA¹, Takeru UTSUMI¹, Kazuma NAKAMURA², Hideo HOSONO¹ ¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, ²Department of Basic Sciences, Kyushu Institute of Technology

A3-11-P12

Investigation of Au nanoparticles supported on ZnO for CO oxidation using density functional theory

Shih Hsuan HUNG University of Tokyo

A3-11-P13

Benchmark of Density Functional Theory for Superconductors in Elemental Materials

Mitsuaki KAWAMURA, Taisuke OZAKI Institute for Solid State Physics, The University of Tokyo

December 11-13, 2019 -

Symposium A-4

Neutrons for Materials Research

Organizers

Toshiji KANAYA (J-PARC MLF, KEK) Jun-ichi SUZUKI (CROSS) Anna PARADOWSKA (ANSTO) Dongfen CHEN (CIAE)

December 11, 2019

Oral Session 1

Interface Science, Slow Dynamics of Polymers

Time 9:00-11:30 Room Miel-4

Chairpersons Hiroyuki AOKI, Tsukasa MIYAZAKI

A4-11-K01 Keynote

9:00-9:35

Interfacial Structural Analysis on Polymer Thin Films by Neutron Reflectometry

Naoya TORIKAI Mie Universitv

A4-11-l02 Invited

9:35-10:00

Neutron Reflectivity Study of Dynamic Polymer Brush Hideaki YOKOYAMA University of Tokyo

A4-11-I03 Invited

10:00-10:25

Structure of Model Electrode-electrolyte Interfaces in Polymer Electrolyte Fuel Cells and Lithium-ion Batteries

Masashi HARADA¹, Kenji KUDO¹, Hiroyuki KAWAURA¹, Norifumi L YAMADA²

¹Toyota Central R&D Labs., Inc., ²High Energy Accelerator Research Organization

A4-11-I04 Invited

10:25-10:50

Impact of Solid Interface on Ion Transport in Polyelectrolyte Thin Films

Daisuke KAWAGUCHI Kyushu University

A4-11-005

10:50-11:10

Structure and Dynamics of Rubbers Reinforced with Metallic Diacrylate Studied by Quantum Beams

Toshiji KANAYA **KEK. J-PARC**

A4-11-006

11:10-11:30

Dynamics of Polyrotaxane Glass Investigated by Quasielastic Neutron Scattering

Koichi MAYUMI¹, Yuta HIDAKA¹, Takeshi YAMADA², Masayuki TANIGUCHI¹, Kazuaki KATO^{1,3} Hideaki YOKOYAMA¹, Tatsuya KIKUCHI⁴, Maiko KOFU⁵, Kenji NAKAJIMA⁵, Toshiji KANAYA⁵, Kohzo ITO¹ ¹The University of Tokyo, ²CROSS, ³NIMS, ⁴Sumitomo Rubber Industries, ⁵J-PARC MLF

December 11, 2019 -

Oral Session 2

Diffraction and Imaging, New Technology

Time 14:00-15:55 Room Miel-4

Chairperson Kazuya AIZAWA

A4-11-I07 ►Invited

Development and Applications of the Neutron Grating Interferometer for Material Research

Seung Wook LEE Pusan National University

A4-11-I08 ►Invited

14:25-14:50

14.50 - 15.15

15:15-15:35

Contrast Variation Small Angle Neutron Scattering Using Proton Spin Polarization at SANS Spectrometer iMATERIA (BL20), J-PARC

Yohei NODA¹, Tomoki MAEDA¹, Takayuki OKU^{1,2}, Satoshi KOIZUMI¹, Tomomi MASUI³, Hiroyuki KISHIMOTO³ ¹Ibaraki University, ²J-PARC Center, ³Sumitomo Rubber Industries, Ltd.

A4-11-I09 Invited

Structural Response of Piezoelectric Material Studied by Stroboscopic Neutron Diffraction under Cyclic Electric Field

Takuro KAWASAKI, Stefanus HARJO, Kazuya AIZAWA Japan Atomic Energy Agency

A4-11-010

Martensitic Transformation in Metastable Steels Monitored by Neutron Diffraction

Stefanus HARJO¹, Takuro KAWASAKI¹, Noriyuki TSUCHIDA², Satoshi MOROOKA¹, Kazuya AIZAWA¹

¹Japan Atomic Energy Agency, ²University of Hyogo

A4-11-011

15:35-15:55

Diffraction Satoshi NAKANO¹, Asami SANO-FURUKAWA², Takanori HATTORI², Kazuki KOMATSU³, Hiroshi FUJIHISA⁴, Hiroshi YAMAWAKI⁴, Yoshito GOTOH⁴, Takumi KIKEGAWA⁵ ¹National Institute for Materials Science, ²J-PARC Center, Japan Atomic Energy Agency, ³University of Tokyo,

⁴National Institute of Advanced Industrial Science and Technology, ⁵Institute of Materials Structure Science, High Energy Accelerator Research Organization

Symposium A

14:00-14:25

	December	12 2019)	
,				
	Oral See	ssion 4	Ł	
Г	Time Division N	Aeasure	ements	
Т	ime 9:00-11:15	Room	Mont-2	
Chairperso	n Jun-ichi SUZUK	I		
A4-12-K01	►Keynote			9:00-9:35
Strobosco	oic Small-angle Ne	utron Sc	attering fo	or
Metastable	e Magnetic Skyrmi	on Lattic	e in MnSi	
Taro NAK/	Taro NAKAJIMA			
The Unive	rsity of Tokyo			
A4-12-I02	► Invited		(9:35-10:00

Development and Application of Pulsed Magnet System up to 30 Tesla for Neutron Scattering Experiment

Masao WATANABE¹, Takumi KIHARA², Hiroyuki NOJIRI² ¹J-PARC Center / JAEA, ²Institute for Materials Research / Tohoku University

A4-12-I03 ► Invited 10.00 - 10.25Study of Deformation Mechanism of Rock Samples Using Simultaneous Measurements of AE Signal and Neutron Diffraction Pattern

Jun ABE¹, Kotaro SEKINE², Stefanus HARJO³, Takuro KAWASAKI³, Wu GONG⁴, Kazuya AIZAWA³ ¹Comprehensive Research Organization for Science and Society (CROSS), ²Japan Oil, Gas and Metals National Corporation (JOGMEC), ³Japan Atomic Energy Agency (JAEA), ⁴Kyoto University

A4-12-I04 Invited

10:25-10:50

High-Pressure and Temperature Neutron Radiography for Measuring Interdiffusion of H and D in Brucite

Hiroshi ARIMA¹, Takanori HATTORI², Asami SANO-FURUKAWA², Shinichi MACHIDA¹, Jun ABE¹, Kenichi FUNAKOSHI¹ ¹CROSS, ²JAEA

A4-12-I05 ► Invited

10:50-11:15

Microstructure of Vanishing Foam Investigated by Time-of-flight at SANS Spectrometer iMATERIA (BL20) J-PARC

Satoshi KOIZUMI¹, Shiho YADA², Toshikazu YOSHIMURA², Hiroshi SHIMOSEGAWA³, Hiroya FUJITA³, Yukako MATSUE⁴, Yohei NODA¹ ¹Ibaraki University, ²Nara Women's University, ³NOF Corporation, ⁴Kracie Home Products, Ltd

December 12, 2019

Oral Session 5

Conduction and Dispersion

Time 14:00-16:15 Room Mont-2

Chairperson Yukinobu KAWAKITA

A4-12-K06 ►Keynote

14:00-14:35

Structural Study of Hydrides by High Intensity Neutron Total Diffractometer (NOVA)

Kazutaka IKEDA

High Energy Accelerator Research Organization (KEK)

A4-12-I07 Invited

14:35-15:00

Ion Migration Mechanism for Li₁₀GeP₂S₁₂-type Lithium Conductors Investigated by Neutron Diffraction Measurements

Satoshi HORI¹, Kota SUZUKI¹, Masaaki HIRAYAMA¹, Ryoji KANNO¹, Takeshi YAJIMA², Zenji HIROI², Yoyo HINUMA³, Takashi OHHARA⁴, Takashi KAMIYAMA⁵ ¹Tokyo Institute of Technology, ²University of Tokyo, ³Chiba University, ⁴Japan Atomic Energy Agency, ⁵Institute of Materials Structure Science

A4-12-I08 ► Invited

15:00-15:25

Local Structure Analysis on Crystalline Electrode Materials for Rechargeable Batteries by Reverse Monte Carlo Modelling

Naoto KITAMURA Tokyo University of Science

A4-12-I09 ► Invited

15:25-15:50

15:50-16:15

Insights into Caloric Materials: a Neutron Scattering Study

Bing LI

Institute of Metal Research, Chinese Academy of Sciences

A4-12-I10 ► Invited

Structure and Dynamic Properties of Water at Extreme Conditions - in a Nano-space and under High Pressures Koji YOSHIDA, Toshio YAMAGUCHI Fukuoka University

December 13, 2019

Oral Session 7

Structure and Dynamics of Magnetic and Superconducting Materials

Time 9:00-11:35 Room Miel-5

Chairperson Takashi KAMIYAMA

A4-13-I01 Invited

9:00-9:25

Combined Neutron Diffraction and X-ray Absorption Spectroscopy Study on the Spin Structures in Cobaltite Double Perovskites

Deok-Yong CHO Chonbuk National University

A4-13-I02 Invited

9:25-9:50

Magnetic Structure Analysis Using Z-Rietveld Program <u>Masato HAGIHALA</u> Using Energy Academic Operation (VEI)

High Energy Accelerator Research Organization (KEK)

A4-13-I03 Invited

9:50-10:15

Development and Application of Magnetic Pair Distribution Function (mPDF) Analysis

Katsuaki KODAMA Japan Atomic Energy Agency

A4-13-004

10:15-10:35

Neutron Scattering Experiments to Understand the Multiferroicity in the Molecular Magnet $(ND_4)_2$ FeCl₅·D₂O

<u>Javier CAMPO</u>¹, Oscar FABELO², Jose Alberto RODRIGUEZ-VELAMAZAN², Juan RODRIGUEZ-CARVAJAL², Laurent CHAPON³ ¹Aragon Materials Science Institute (CSIC-UZ), ²Institute Laue Langevin, ³Diamond Light Source Ltd

A4-13-005

10:35-10:55

Systematic Study of a New Ferrite Family, 114 Ferrites RBaFe₄O₇ (R = Y, Rare Earth, and etc.) - Neutron Scattering Measurements -

Kazuya KAMAZAWA

Comprehensive Research Organization for Science and Society (CROSS)

A4-13-006

10:55-11:15

- 115 -

Spin Glass Dynamics in a Structural Glass of C4mimFeCl₄

<u>Maiko KOFU</u>¹, Ryuta WATANUKI², Toshiro SAKAKIBARA³, Seiko OHIRA-KAWAMURA¹, Kenji NAKAJIMA¹, Takeshi UEKI⁴, Kazuhiro AKUTSU⁵, Osamu YAMAMURO³ ¹J-PARC Center, ²Yokohama National University, ³Institute for Solid State Physics, University of Tokyo, ⁴National Institute for Materials Science, ⁵Comprehensive Research Organization for Science and Society

A4-13-007

/ Dunamiaa af Lludr

Quantum Dynamics of Hydrogen in Iron-based Superconductor

Jun-ichi YAMAURA

Materials Research Center for Element Strategy, Tokyo Institute of Technology

December 12, 2019

Poster Session

Time 16:30-18:00 Room Trade-0

A4-12-P01

Elastic and Dynamical Structural Properties of La and Mn-doped $SrTiO_3$ Studied by Neutron Scattering and Their Relation with Thermal Conductivities

<u>Ryoichi KAJIMOTO</u>¹, Mitsutaka NAKAMURA¹, Naoki MURAI¹, Shin-ichi SHAMOTO¹, Takashi HONDA², Kazutaka IKEDA², Toshiya OTOMO², Hiroto HATA³, Takahiro ETO³, Masaaki NODA⁴, Hideki KUWAHARA⁴, Tetsuji OKUDA³ ¹Japan Atomic Energy Agency, ²High Energy Accelerator Research Organization, ³Kagoshima University, ⁴Sophia University

A4-12-P02

Structural Instability-assisted Li-migration in Solid-state Electrolyte (La,Li)TiO₃

Masato MATSUURA¹, Hiroki MORIWAKE², Yasuyuki FUJIWARA³, Ryoichi KAJIMOTO⁴, Mitsutaka NAKAMURA⁴, Koji OHARA⁵, Yukinobu KAWAKITA⁴

¹Comprehensive Research Organization for Science and Society, ²Nanostructures Research Laboratory, Japan Fine Ceramics Center, ³Faculty of Engineering, Shinshu University, ⁴J-PARC Center, Japan Atomic Energy Agency, ⁵Japan Synchrotron Radiation Research Institute

A4-12-P03

Q-dependence of the Resonance Mode on Iron-based Superconductor $Fe(Te_{0.5}Se_{0.5})$

Motoyuki ISHIKADO¹, Katsuaki KODAMA²,

Ryoichi KAJIMOTO³, Mitsutaka NAKAMURA³, Vasubiro INAMURA³ Kazubiko IKELICHI¹ Masatoshi

Yasuhiro INAMURA³, Kazuhiko IKEUCHI¹, Masatoshi ARAI³, Shin-ichi SHAMOTO⁴

¹CROSS, ²Materials Sciences Research Center, JAEA, ³J-PARC, JAEA, ⁴Advance Science Research Center JAEA Symposium G

A4-12-P04

Semimetal and Superconductivity in Chiral-structure Phase of R_3T_4 Sn₁₃ (R = Ce, La and T = Co, Rh, Ir)

Kazuaki IWASA¹, Yuka OTOMO², Kazuya SUYAMA², Ryoga KARINO¹, Kango MIYAKAWA¹, Seiya NAKAZATO¹, Daisuke HASHIMOTO¹, Mami SHIOZAWA¹, Keitaro KUWAHARA¹, Motoyuki ISHIKADO³, Hajime SAGAYAMA⁴, Hironori NAKAO⁴, Seiko OHIRA-KAWAMURA⁵, Tatsuya KIKUCHI⁵, Kenji NAKAJIMA⁵, Takashi OHHARA⁵, Akiko NAKAO³, Koji MUNAKATA³, Ryoji KIYANAGI⁵, Jean-Michel MIGNOT⁶, Françoise DAMAY⁶, Arsen GUKASOV⁶

¹Ibaraki University, ²Tohoku University, ³Comprehensive Research Organization for Science and Society, ⁴Institute of Materials Structure Science, High Energy Accelerator Research Organization, ⁵J-PARC Center, ⁶Laboratoire Léon Brillouin, CEA-CNRS

A4-12-P05

Monochiral Helimagnetism in Homochiral Crystals of CsCuCl_3 Probed by Polarized Neutron Diffraction and Muon Spin Rotation

Kazuki OHISHI¹, Yusuke KOUSAKA², Kazuhisa KAKURAI¹, Jun-ichi SUZUKI¹, Vladimir HUTANU³, Javier CAMPO⁴, Akihiro KODA⁵, Kenji M KOJIMA⁶, Hubertus LUETKENS⁷, Alex AMATO⁷, Katsuya INOUE⁸, Jun AKIMITSU⁹ ¹Comprehensive Research Organization for Science and Society (CROSS), ²Osaka Prefecture University, ³RWTH Aachen University and Julich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum, ⁴Aragon Materials Science Institute (CSIC-University of Zaragoza), ⁵High Energy Accelerator Research Organization (KEK), ⁶TRIUMF,

⁷Paul Scherrer Institute, ⁸Hiroshima University, ⁹Okayama University

A4-12-P06

Direct Observation of Ferromagnetic Moment of Potassium Nanoclusters Arrayed in Zeolite A by Polarized Neutron Diffraction

Takehito NAKANO Ibaraki University

A4-12-P07

Distributions of Water inside Nafion Thin Films on Different Substrates Analyzed by Neutron Reflectometry under Controlled Temperature and Humidity

<u>Teppei KAWAMOTO</u>¹, Makoto AOKI², Taro KIMURA³, Takako MIZUSAWA⁴, Norifumi L. YAMADA⁵, Junpei MIYAKE⁶, Kenji MIYATAKE^{1,6}, Junji INUKAI^{1,6}

¹Fuel Cell Nanomaterials Center, University of Yamanashi, ²Division of Life, Medical, Natural Sciences and Technology, Organization for Advanced and Integrated Research, Kobe University, ³Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, ⁴Comprehensive Research Organization for Science and Society, ⁵Institute of Materials Structure Science, High Energy Accelerator Research Organization, ⁶Clean Energy Research Center, University of Yamanashi

A4-12-P08

Quasi-elastic and Inelastic Neutron Scattering Spectrometer DNA in MLF, J-PARC and its Application to Materials Science

Yukinobu KAWAKITA¹, Masato MATSUURA²,

Taiki TOMINAGA², Takeshi YAMADA², Makoto KOBAYASHI², Hiroshi NAKAGAWA¹

¹J-PARC Center, Japan Atomic Energy Agency,

²Comprehensive Research Organization for Science and Society

A4-12-P09

Small and Wide Angle Neutron Scattering Technique for Materials Research

Jun-ichi SUZUKI

Comprehensive Research Organization for Science and Society (CROSS)

A4-12-P10

Current Status of the New Compact Accelerator-based Neutron Facility at AIST

Koichi KINO^{1,2}, Takeshi FUJIWARA^{1,2}, Michihiro FURUSAKA^{1,2}, Noriyosu HAYASHIZAKI^{1,2,3}, Hidetoshi KATO^{1,2}, Ryunosuke KURODA^{1,2}, Koji MICHISHIO^{1,2}, Takemi MUROGA¹, Hiroshi OGAWA^{1,2}, Brian E OROURKE^{1,2}, Nagayasu OSHIMA^{1,2}, Daisuke SATO^{1,2}, Norihiro SEI^{1,2}, Tamao SHISHIDO¹, Ryoichi SUZUKI^{1,2}, Masahito TANAKA^{1,2}, Hiroyuki TOYOKAWA^{1,2}, Akira WATAZU^{1,2} ¹Innovative Structural Materials Association (ISMA), ²National Institute of Advanced Industrial Science and Technology (AIST), ³Tokyo Institute of Technology (Tokyo Tech)

Cluster B

New Trend of Materials Research

Symposium

- B-1 Data-Centric Science for Materials Research
- **B-2** Materials Integration: Fusion of Materials Science and Experiments through Data Science
- B-3 Mathematical Materials Science
 -Mathematical Approaches for Materials Designs in the Data Driven Society-
- B-4 Topological Materials Science for Innovative Functions

- December 11–12, 2019 – Symposium B-1

Data-Centric Science for Materials Research

[Organizers]

Shinji TSUNEYUKI (Department of Physics, the University of Tokyo)
 Satoshi ITOH (National Institute for Materials Science)
 Fumiyasu OBA (Tokyo Institute of Technology)
 Jason HATTRICK-SIMPERS (National Institute of Standards and Technology)
 Matthias SCHEFFLER (Fritz Haber Institute of the Max Planck Society)
 Jian-xin XIE (University of Science and Technology Beijing)

Sponsor

Science and Technology of Advanced Materials(STAM)

– December 11, 2019

Oral Session 1

Time 9:00-11:30 Room Miel-1

Chairpersons Shinji TSUNEYUKI, Matthias SCHEFFLER

B1-11-I01 ► Invited

9:00-9:30

Data-driven Materials Design and Machine Learning using the Materials Project Kristin PERSSON

University of California at Berkeley

B1-11-I02 ► Invited

9:30-10:00

Building a Foundation for Autonomous Materials Research Systems at an International Scale Zachary Tim TRAUTT

National Institute of Standards and Technology

B1-11-003

10:00-10:15

10:15-10:30

Prediction of Material Properties from Its Chemical Formula Using Novel Descriptor *"Elemental Fingerprints"* with Neural Networks

<u>Jaekyun HWANG</u>¹, Satoshi WATANABE^{1,2} ¹The University of Tokyo, ²National Institute for Materials Science

B1-11-004

Structural feature extraction on chemical space by clustering and network analysis Mariko ITO, Takaaki OHNISHI

The University of Tokyo

B1-11-I05 ► Invited

10:30-11:00

Breaking the Curse of Small Data in Materials Informatics <u>Ryo YOSHIDA</u> The Institute of Statistical Mathematics

The Institute of Statistical Mathematics

B1-11-006

11:00-11:15

Hybrid Algorithm of Bayesian Optimization and Evolutionary algorithm in Crystal Structure Prediction

<u>Tomoki YAMASHITA</u>^{1,2}, Shinichi KANEHIRA², Nobuya SATO³, Hiori KINO^{1,4}, Koji TSUDA^{1,5,6}, Takashi MIYAKE^{1,3,4}, Tamio OGUCHI^{1,2}

¹Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, ²Institute of Scientific and Industrial Research, Osaka University, ³Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, ⁴Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, ⁵Graduate school of Frontier Sciences, The University of Tokyo, ⁶RIKEN Center for Advanced Intelligence Project

B1-11-007

Fast Prediction of Crystal Structure Stability by Machine Learning

<u>Yuki INADA</u> The University of Tokyo

—— December 11, 2019

Oral Session 2

Time 14:00-16:00 Room Miel-1

Chairpersons Satoshi ITOH, Youhei YAMAJI

B1-11-I08 Invited

14:00-14:30

14:30-14:45

11:15-11:30

Verification and Error Estimates for *Ab Initio* Data

HU Berlin

B1-11-009

High-Throughput Calculations and Machine-Learning Prediction of Oxygen Vacancy Formation Energies

Yu KUMAGAI¹, Akira TAKAHASHI², Fumiyasu OBA^{1,2,3} ¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, ²Laboratory for Materials and Structures, Tokyo Institute of Technology, ³CMI2, MaDIS, National Institute for Materials Science

B1-11-010

Machine learning and ab initio calculations for protonconducting oxides

Yoshihiro YAMAZAKI Kyushu University

B1-11-I11 ► Invited

15:00-15:30

14:45-15:00

Unavoidable Disorder and Entropy in Multi-Component Systems

Stefano CURTAROLO

Center of Materials Genomics, Duke University

B1-11-012

15:30-15:45

Systematic generation of tight-binding Hamiltonians for ferromagnets and its application <u>Takashi KORETSUNE</u>

Tohoku University

B1-11-013

15:45-16:00

Construction of Neutral Network Potential to Investigate Interface Structures of $Au(111)/Li_3PO_4$

<u>Koji SHIMIZU</u>¹, Wei LIU¹, Wenwen LI², Yasunobu ANDO², Emi MINAMITANI³, Satoshi WATANABE^{1,4}

¹The University of Tokyo, ²National Institute of Advanced Industrial Science and Technology, ³Institute for Molecular Science, ⁴National Institute for Materials Science

December 11, 2019

Oral Session 3

Time 16:30-18:30 Room Miel-1

Chairpersons Yu KUMAGAI, Takashi KORETSUNE

B1-11-I14 ► Invited

16:30-17:00

Screening materials from high-throughput ab initio calculations and machine learning

Gian-Marco RIGNANESE

Université catholique de Louvain

B1-11-015

17:00-17:15

Discovery of Oxide Ion Conductors by ensemble-scope descriptor

Nobuko OHBA, Seiji KAJITA, Akitoshi SUZUMURA, Shin TAJIMA, Ryoji ASAHI

Toyota Central R&D Laboratories Inc.

B1-11-016

17:15-17:30

Computational screening of novel solid electrolyte candidates for all-solid-state battery by high-throughput DFT and data science techniques

 $\underline{\text{Randy JALEM}}^1, \text{ Yoshitaka TATEYAMA}^{1,2,4}, \text{ Ichiro TAKEUCHI}^{2,5}, \\ \overline{\text{Masanobu NAKAYAMA}}^{1,2,4,5}$

¹Center for Green Research on Energy and Environmental Materials & Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Japan, ²Center for Materials research by Information Integration (CMI²), Research and Services Division of Materials Data and Integrated System (MaDIS), NIMS, Tsukuba, Japan, ³PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan, ⁴Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan, ⁵Nagoya Institute of Technology (NITech), Nagoya, Japan

B1-11-I17 ► Invited

17:30-18:00

Data-Driven Computational Design of Emerging Microstructural Material Systems

Wei CHEN

Northwestern University

B1-11-018

18:00-18:15

Origin of High-Temperature Superconductivity Revealed by Boltzmann Machine

Youhei YAMAJI¹, Teppei YOSHIDA², Atsushi FUJIMORI³, Masatoshi IMADA^{3,4}

¹The University of Tokyo, ²Kyoto University, ³Waseda University, ⁴Toyota Physical and Chemical Research Institute

B1-11-019

Design of oil molecules by high-throughput molecular dynamics simulations

<u>Seiji KAJITA</u>, Tomoyuki KINJO, Tomoki NISHI Toyota Central R&D Labs., Inc.

December 12, 2019

Oral Session 6

Time 16:30-18:30 Room Port-1

Chairpersons Fumiyasu OBA, Isao OHKUBO

B1-12-I01 Invited

16:30-17:00

17.00 - 17.15

18:15-18:30

Machine learning assisted composition design of Copper-base alloys with high strength and high electrical conductivity

<u>Huadong FU</u>, Hongtao ZHANG, Jianxin XIE University of Science and Technology Beijing

B1-12-002

Development of layered complex nitrides accelerated by the combination of first-principles calculation, machine learning, and experiments

Isao OHKUBO, Takao MORI National Institute for Materials Science (NIMS)

B1-12-003

17:15-17:30

Understanding of diffraction pattern and homology in disordered materials

<u>Yohei ONODERA</u>^{1,2}, Shinji KOHARA^{3,2,4,5}, Shuta TAHARA^{6,2}, Atsunobu MASUNO^{7,2}, Hiroyuki INOUE⁸, Motoki SHIGA^{5,9,16}, Akihiko HIRATA^{10,11,12,13}, Koichi TSUCHIYA¹⁴, Yasuaki HIRAOKA^{15,2,13}, Ippei OBAYASHI^{16,13}, Koji OHARA¹⁷, Osami SAKATA³

¹Institute for Integration Radiation and Nuclear Science, Kyoto University, ²Center for Materials research by Information Integration (CMI2), Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), ³Research Center for Advanced Measurement and Characterization, NIMS, ⁴Research and Utilization Division, Japan Synchrotron Radiation Research Institute. ⁵PRESTO. Japan Science and Technology Agency, ⁶Faculty of Science, University of the Ryukyus, ⁷Graduate School of Science and Technology, Hirosaki University, ⁸Institute of Industrial Science, The University of Tokyo, ⁹Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University, ¹⁰Graduate School of Fundamental Science and Engineering, Waseda University, ¹¹Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, ¹²Mathematics for Advanced Materials-OIL, AIST-Tohoku University, ¹³WPI Advanced Institute for Materials Research, Tohoku University, ¹⁴Design and Producing Field, Corrosion Resistant Alloy Group, Research Center for Structural Materials, NIMS, ¹⁵Kyoto University Institute for Advanced Study, Kyoto University, ¹⁶Center for Advanced Intelligence Project, RIKEN, ¹⁷Diffraction and Scattering Division, Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute

Symposium B

Symposium

B1-12-I04 Invited

17:30-18:00

Data-Driven Science for X-Ray Absorption Fine Structure Spectra Measured in Synchrotron Radiation Facilities

Ichiro AKAI^{1,2}, Yoshiki SENO², Masaichiro MIZUMAKI³, Toru AONISHI⁴

¹Kumamoto University, ²Kyushu Synchrotron Light Research Center, ³Japan Synchrotron Radiation Research Institute, ⁴Tokyo Institute of Technology

B1-12-005

18:00-18:15

Sparse modeling of extended x-ray absorption fine structures (EXAFS)

Yasuhiko IGARASHI^{1,2,3}, Hiroyuki SETOYAMA⁴, Toshihiro OKAJIMA⁴, Ichiro AKAI^{4,5}, Masato OKADA^{1,3} ¹Graduate School of Frontier Science, The University of Tokyo, ²Japan Science and Technology Agency, PRESTO, ³Research and Services Division of Materials Data and Integrated System, National Institute for Material Science, ⁴Kyushu Synchrotron Light Research Center, ⁵Institute of Pulsed Power Science, Kumamoto University, Kumamoto

B1-12-006

18:15-18:30

Statistical Machine Learning for Spectrum Imaging Data Analysis

Motoki SHIGA^{1,2,3}, Shunsuke MUTO⁴

¹Gifu University, ²Japan Science and Technology Agency, ³RIKEN, ⁴Nagoya University

December 12, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

B1-12-P01

Descriptor for Efficient Crystal Structure Prediction Using the Bayesian Optimization

<u>Nobuya SATO</u>¹, Tomoki YAMASHITA^{2,3}, Tamio OGUCHI^{2,3}, Koji HUKUSHIMA^{2,4}, Takashi MIYAKE^{1,2}

¹National Institute of Advanced Industrial Science and Technology, ²National Institute for Materials Science, ³Institute of Scientific and Industrial Research, Osaka University, ⁴Department of Basic Science, University of Tokyo

B1-12-P02

Testing Procedure Anomaly Detection Method for Materials Big Data

Peng SHI, Zhen ZHAO University of Science and Technology Beijing

B1-12-P03

Predicted High-yield Synthesis Of Manganese-oxide Nanosheets Through Exfoliation Of The Layered Composites

Kyohei NODA¹, Yasuhiko IGARASHI^{2,3}, Hiroaki IMAI¹, Yuya OAKI^{1,}

¹Keio University, ²The University of Tokyo, ³JST PRESTO

B1-12-P04

Crystal structure simulation by assimilating incomplete experimental data

Seiji YOSHIKAWA¹, Naoto TSUJIMOTO¹, Daiki ADACHI¹, Ryosuke AKASHI¹, Synge TODO^{1,2,3}, Shinji TSUNEYUKI^{1,2} ¹Department of Physics, The University of Tokyo, ²Institute for Solid State Physics, The University of Tokyo, ³Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science

B1-12-P05

3D Phase-Field Modeling of Solid-State Sintering: The Diffusion Mechanism Dependence of Grain-Boundary Formation

Yuki OKADA, Akiyasu YAMAMOTO, Akimitsu ISHII, Akinori YAMANAKA Tokyo University of Agriculture and Technology

B1-12-P06

Modeling the normal-state current transport in ironbased superconducting polycrystalline materials

Takuya OBARA, Akiyasu YAMAMOTO Tokyo University of Agriculture and Technology

B1-12-P07

Prediction of X-ray Absorption Spectra from Crystal

Structures: Machine Learning Approaches Hidekazu IKENO^{1,2}, Naoyuki MIYAMOTO¹

¹Osaka Prefecture University, ²PRESTO, JST

B1-12-P08

Deep Neural Network Approach to the X-ray Absorption Spectroscopy

Naoyuki MIYAMOTO¹, Hidekazu IKENO^{1,2}

¹Department of Materials Science, Osaka Prefecture University, ²Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)

B1-12-P09

Uncovering new stable Fe-Nd-X structures with machine learning

Duong Nguyen NGUYEN

Japan Advanced Institute of Science and Technology

B1-12-P10

Machine-Learning Guided Discovery of a New Thermoelectric Material

Yuma IWASAKI NEC

B1-12-P11

Machine-Learned Kinetic Energy Functional in Isolated Systems and its Combination with Orbital-Free Density Functional Theory

Junji SEINO^{1,2}, Ryo KAGEYAMA³, Mikito FUJINAMI³, Yasuhiro IKABATA¹, Hiromi NAKAI^{1,3,4}

¹Waseda Research Institute for Science and Engineering, Waseda University, ²PRESTO, Japan Science and Technology Agency, ³School of Advanced Science and Engineering, Waseda University, ⁴ESICB, Kyoto University

B1-12-P12

Machine-Learning-Assisted Exploration for Novel Lanthanide Based Metal-Organic Frameworks

Yu KITAMURA¹, Daisuke TANAKA^{1,2}

¹Kwansei Gakuin University, ²JST PRESTO

B1-12-P13

Novel Material Search Method of Lithium Ion Conductors Using Machine Learning

Kota SUZUKI^{1,2}, Kosei OHURA¹, Atsuto SEKO^{2,3}, Masaaki HIRAYAMA¹, Isao TANAKA³, Ryoji KANNO¹ ¹Tokyo Institute of Technology, ²JST, PRESTO, ³Kyoto University

B1-12-P14

First-principles prediction of magnetic structures in crystal

Michi-To SUZUKI Institute for Materials Research

B1-12-P15

Machine Learning Assisted Synthesis of Novel Coordination Polymer

Takuma WAKIYA¹, Yoshinobu KAMAKURA¹, Daisuke TANAKA^{1,2}

¹Kwansei Gakuin University, ²JST PRESTO

B1-12-P16

Machine learning quantum Monte Carlo simulations for strongly correlated electron materials

Naoto TSUJI RIKEN Center for Emergent Matter Science (CEMS)

B1-12-P17

Prediction of Fibrinogen Adsorption on Self-Assembled Monolayers (SAM) from Chemical Structures and Quantification of Structures' Importance using Artificial Neural Network (ANN)

<u>Rudolf JASON</u>¹, Hayashi TOMOHIRO^{1,2} ¹Tokyo Institute of Technology, ²JST-PRESTO

B1-12-P18

Al-Robot-driven Materials Research for Inorganic Materials

 $\frac{\text{Ryota SHIMIZU}^{1,2}}{\text{Taro HITOSUGI}^1}, \text{Shigeru KOBAYASHI}^1, \text{Yasunobu ANDO}^3,$

¹Tokyo Institute of Technology, ²PRESTO, Japan Science and Technology Agency, ³National Institute of Advanced Industrial Science and Technology

B1-12-P19

Machine Learning-Based Analysis for High-throughput Peak Detection in Synchrotron X-ray Spectromicroscopy

<u>Naoka NAGAMURA</u>¹, Tarojiro MATSUMURA³, Shotaro AKAHO³, Kenji NAGATA^{1,2}, Yasunobu ANDO³ ¹National Institute of Materials Science, ²Japan Science and Technology Agency, PRESTO, ³National Institute of Advanced Industrial Science and Technology

B1-12-P20

Material Parameter Estimation for Phase-field Simulation of Solid-state Sintering using Data Assimilation

Akinori YAMANAKA¹, Akimitsu ISHII¹, Yuki OKADA¹,

Yusuke SHIMADA², Akiyasu YAMAMOTO¹

¹Tokyo University of Agriculture and Technology, ²Tohoku University

B1-12-P21

First-Principles Study and Descriptor Selection of Site Preference of Hydride Anions in Hexagonal $BaVO_{3x}H_x$

<u>Kazuki SHITARA</u>^{1,2,3}, Takafumi YAMAMOTO⁴, Hiroshi KAGEYAMA⁵, Hiroki MORIWAKE^{2,3},

Akihide KUWABARA^{2,3}

¹Joint and Welding Research Institute, Osaka University, ²Nanostructures Research Laboratory, Japan Fine Ceramics Center, ³Laboratory for Materials and Structures, Tokyo Institute of Technology, ⁴Graduate School of Engineering, Kyoto University

B1-12-P22

Development of thermophysical property database for materials informatics

<u>Tetsuya BABA</u>, Erina FUJITA, Yibin XU National Institute for Materials Science

December 12–13, 2019 – Symposium B-2

Materials Integration: Fusion of Materials Science and Experiments through Data Science

Organizers

Junya INOUE (The University of Tokyo) Irina ROSLYAKOVA (Ruhr-Universität Bochum) Masahiko DEMURA (National Institute for Materials Science)

December 12, 2019

Oral Session 5

Time 14:00-16:10 Room Port-3

Chairperson Junya INOUE

B2-12-K01 ► Keynote

14:00-14:40

14:40-15:10

3-D Phase-Field Simulations to machine-learn 3-D Features from 2-D Microstructures

Ingo STEINBACH, Mansur AHMED, Muhammad Adil ALI, Irina ROSLYAKOVA

Ruhr University Bochum

B2-12-I02 Invited

Network Theory Meets Materials Science Christopher WOLVERTON¹, Vinay HEGDE¹, Murat AYKOL² ¹Northwestern University, ²Toyota Research Institute

B2-12-I03 Invited

15:10-15:40

Data management for atomistic simulation: design and case studies

Yury LYSOGORSKIY, Thomas HAMMERSCHMIDT, Matous MROVEC, Ralf DRAUTZ Ruhr University Bochum

B2-12-I04

Invited

15:40-16:10

Workflow control APIs for inverse problem analysis

Satoshi MINAMOTO¹, Kaita ITO¹, Takuya KADOHIRA¹,

Junya INOUE^{1,2}, Masahiko DEMURA¹ ¹National Institute for Materials Science, ²The University of Tokyo

December 12, 2019 **Oral Session 6**

Time 16:30-18:20 Room Port-3

Chairperson Masahiko DEMURA

B2-12-105 Invited

16:30-17:00

On the consideration of inverse problem analysis for performance of structural materials Manabu ENOKI

The University of Tokyo

B2-12-106 Invited

Artificial Materials Intelligence

Irina ROSLYAKOVA Ruhr University Bochum

B2-12-I07 ► Invited 17:30-18:00

Accelerating Materials Innovation: ICME, Materials Design, Data and the Underlying Workforce Training

E. Begum GULSOY¹, Juan J. DE PABLO², Gregory B. OLSON¹, Peter W. VOORHEES ¹Northwestern University, ²University of Chicago

B2-12-008

18:00-18:20

Starrydata: an open database of published plot data for materials informatics

Yukari KATSURA

The University of Tokyo

December 13, 2019

Oral Session 7

Time 9:30-11:30 Room Port-3

Chairperson Makoto WATANABE

B2-13-K01 • Keynote

10:10-10:30

10:30-10:50

10:50-11:10

17:00-17:30

Data-scientific Approaches in Materials Integration

Masahiko DEMURA National Institute for Materials Science

B2-13-002

Physical-based data-driven modeling strategy for creep behavior of Co-base superalloys

Setareh ZOMORODPHOOSH, Irina ROSLYAKOVA, Ingo STEINBACH

B2-13-003

Prediction of Creep Rupture Time for Weld Joints of 2 1/4Cr-1Mo Steel

Hitoshi IZUNO¹, Masahiko DEMURA¹, Masayoshi YAMAZAKI¹, Masaaki TABUCHI², Daisuke ABE³, Keisuke TORIGATA³ ¹Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), ²Research Center for Structural Materials, National Institute for Materials Science (NIMS), ³Corporate Research & Development, IHI Corporation

B2-13-004

Universal Framework of Bayesian Creep Model Selection for Steel

Yoh-ichi MOTOTAKE¹, Hitoshi IZUNO², Kenji NAGATA², Masahiko DEMURA², Masato OKADA³

¹Institute of Statistical Mathematics, ²National Institute for Materials Science, ³University of Tokyo

Symposi

Ruhr University Bochum

- 122 -

B2-13-005

11:10-11:30

Identification of the transformation kinetics of steels from a dilatometric curve using a machine learning method

Hoheok KIM¹, Junya INOUE¹², Masato OKADA³, Kenji NAGATA³

¹Graduate School of Materials Engineering, The University of Tokyo, ²Research Center for Advanced Science and Technology, The University of Tokyo, ³Graduate School of Frontier Science, The University of Tokyo

December 13, 2019 Oral Session 8

Time 14:00-15:50 Room Port-3

Chairperson Satoshi MINAMOTO

B2-13-I06 ► Invited

14:00-14:30

PRISMS-Plasticity: An Open-Source Crystal Plasticity Finite Element Software

Mohammadreza YAGHOOBI¹, Sriram GANESAN^{2,6}, Srihari SUNDAR², Aaditya LAKSHMANAN², Aeriel MURPHY-LEONARD^{1,5}, Shiva RUDRARAJU^{3,4}, John E. ALLISON¹, Veera SUNDARARAGHAVAN²

¹Materials Science and Engineering, University of Michigan, Ann Arbor, ²Aerospace Engineering, University of Michigan, Ann Arbor, ³Mechanical Engineering, University of Michigan, Ann Arbor, MI, ⁴Mechanical Engineering, University of Wisconsin-Madison, WI, ⁵U.S. Naval Research Laboratory, Washington, DC, ⁶Intel, Hillsboro, OR

B2-13-007

14:30-14:50

Observation and crystal plasticity simulation of microstructurally short crack propagation in rolled Ti-6AI-4V alloy

<u>Fabien BRIFFOD</u>, Takayuki SHIRAIWA, Manabu ENOKI The University of Tokyo

B2-13-008

14:50-15:10

Prediction of defect-induced fatigue failures using physical model and data assimilation techniques

<u>Takayuki SHIRAIWA</u>, Ryota SAKAGUCHI, Fabien BRIFFOD, Pornthep CHIVAVIBUL, Manabu ENOKI The University of Tokyo

B2-13-009

15:10-15:30

15:30-15:50

Observation of fatigue crack initiation and crystal plasticity analysis of flame-resistant Mg alloy Seiya NAKAJIMA

University of Tokyo

B2-13-010

Autonomous generation of process-structure linkages for two-phase composites from simulation data obtained from micromechanical finite element models

<u>A.F. MARSHALL</u>, Surya R. KALIDINDI Georgia Institute of Technology

- December 13, 2019

Oral Session 9

Time 16:30-18:30 Room Port-3

Chairperson Manabu ENOKI

B2-13-I11 Invited

16:30-17:00

17.00 - 17.20

17:20-17:40

17:40-18:10

Materials Integration for Carbon Fiber reinforced composites

Tomonaga OKABE¹

¹Tohoku University, ²University of Washington

B2-13-012

Evaluation of Reduction of Stress Concentration around a Circular Hole by Fiber Steering Placement Technique

Hiroshi SUEMASU, Yuichiro AOKI

Japan Aerospace Exploration Agency

B2-13-013

Simulation of Phase Separated Polymer Matrix for an Applicatoin to a Composite

<u>Yutaka OYA</u>¹, Naofumi UMEMOTO¹, Tomonaga OKABE¹, Toshihiro KAWAKATSU²

¹Department of Aerospace Engineering, Tohoku University, ²Department of Physics, Tohoku University

B2-13-I14 ► Invited

Materials Integration for powder-based metal

Makoto WATANABE^{1,2}

¹National Institute for Materials Science, ²Research Center for Advanced Science and Technology, The University of Tokyo

B2-13-015

18:10-18:30

Image analysis tensile test method at elevated temperature to obtain true stress-true strain curves up to large strain in Ti alloy

Shiro TORIZUKA University of Hyogo Symposium B

December 11–13, 2019 – Symposium B-3

Mathematical Materials Science -Mathematical Approaches for Materials Designs in the Data Driven Society-

Organizers

Motoko KOTANI (Tohoku University) Kazuto AKAGI (Tohoku University) Yasumasa NISHIURA (Tohoku University) Shin'ichi OISHI (Waseda University) Stephen Hyde (Australian National University) Christian Ratsch (UCLA)

December 11, 2019

Oral Session 1

Room Work-3 Time 9:00-11:20

Opening 9:00-9:10

B3-11-K01 ▶Keynote

Mathematics in Topological Materials for Quantum Computing Zhenghan WANG

Microsoft Station Q anf UCSB

B3-11-002

9:40-10:00

9:10-9:40

Crystallographic T-duality as the Baum-Connes isomorphism Yosuke KUBOTA

RIKEN

B3-11-003

10:00-10:20

10.30-11.00

Anomaly Matching and Symmetry-protected Critical Phases in SU(N) Spin Systems in 1+1 Dimensions

Yuan YAO¹, Chang-Tse HSIEH^{1,2}, Masaki OSHIKAWA¹ ¹Institute for Solid State Physics, Univ. of Tokyo, ²Kavli Institute for the Physics and Mathematics of the Universe

$\left[\right]$	Break	
	10:20-10:30	

B3-11-I04 Invited

Neural network as a discrete geometry for materials through holographic principle Koji HASHIMOTO

Osaka University

B3-11-005

11:00-11:20

Nuclear states and spectra in holographic QCD

Koji HASHIMOTO¹, Yoshinori MATSUO¹, Takeshi MORITA^{2,3} ¹Department of Physics, Osaka University, ²Department of Physics, Shizuoka University, ³Graduate School of Science and Technology, Shizuoka University

December 11, 2019 -

Oral Session 2

Time	14:00-16:00	Room	Work-3
------	-------------	------	--------

B3-11-K06 ►Keynote 14:00-14:30 The Atiyah-Patodi-Singer index theorem and domain walls Mikio FURUTA University of Tokyo B3-11-007 14:30-14:50 Second-order topological phases realized by chiral symmetry Ryo OKUGAWA Tohoku University B3-11-008 14:50-15:10 A Generalized Boundary Condition Applied on Lieb-Schultz-Mattis Type Ingappabilities and Many-body **Chern Numbers** Yuan YAO, Masaki OSHIKAWA

Institute for Solid State Physics, University of Tokyo

B3-11-009

B3-11-010

15:10-15:30

Emergent Flat Bands in Fermionic Honeycomb Networks Chenhua GENG

Institute for Solid State Physics, University of Tokyo

Break 15:30-15:40

15:40-16:00

Synchronized Dynamics of Carbon Nanotubes Dispersed in Solution

Masahito SANO Yamagata University

Sympos

- 125 -

_____ December 12, 2019

Oral Session 6

Time 16:30-18:30 Room Port-2

B3-12-K01 • Keynote

Machine-Learned Interatomic Potentials For Alloy Modeling

Gus Lewis Warren HART Brigham Young University

B3-12-I02 Invited

Optimization Problems in Data Driven Science

-Fundamentals and Applications in Materials Informatics-Akihisa ICHIKI

Nagoya University

B3-12-003

Applied-math approaches for filler-filled polymer nanocomposites

Katsumi HAGITA National Defense Academy

B3-12-004

Natural Computing with Light-Activated Colloidal Crystals

Toshiharu SAIKI¹, Okuto IKEDA¹, Yuka TAKAMATSU¹, Bokusui NAKAYAMA¹, Eiji YAMAMOTO¹, Masashi KUWAHARA² ¹Keio University, ²National Institute of Advanced Industrial Science and Technology

B3-12-005

B3-13-K01

Developments of Molecular Spin Gyroids

Kunio AWAGA Nagoya University

December 13, 2019

Oral Session 7

Time 9:30-11:40 Room Port-2

9:30-10:00

Soft Crystals: Minimal Froths versus Generalized Quantizers

<u>Gregory GRASON</u> University of Massachusetts Amherst

►Keynote

B3-13-I02 ► Invited

10:00-10:30

Computational Study of the Microphase-Separated Structure and Elastic Property of Block Copolymers Takeshi AOYAGI

National Institute of Advanced Industrial Science and Technology

B3-11-I11 ► Invited

Structure-Property Relationship of Heterogeneous Elastomers Investigated by Network Centrality

December 11, 2019 Oral Session 3

Time 16:30-18:40 Room Work-3

<u>Yoshifumi AMAMOTO</u>¹, Ken KOJIO³, Atsushi TAKAHARA³, Yuichi MASUBUCHI², Takaaki OHNISHI¹ ¹The University of Tokyo, ²Nagoya University, ³Kyushu

University of Tokyo, "Nagoya University, "Kyush University

B3-11-012

17:00-17:20

16:30-17:00

Smooth Dependence with Respect to Delay: Temporal Order of Reaction

<u>Junya NISHIGUCHI</u> Tohoku University

B3-11-013

Model Selection of Phase-Field Crystal Models for Targeted Crystalline Patterns

Natsuhiko YOSHINAGA Tohoku University

B3-11-014

17:40-18:00

17:20-17:40

Study of Grain Boundary Structures using Topological Data Analysis and Simple Evaluation with Local Energy Fumiko OGUSHI

National Institute for Materials Science

B3-11-015

18:00-18:20

Topological data analysis of the magnetic domain for the automated visualization of the origin of coercivity

Masato KOTSUGI¹, Takumi YAMADA^{1,2}, Yuta SUZUKI¹, Chiharu MITSUMATA², Kanta ONO^{2,3}, Tetsuro UENO⁴, Ippei OBAYASHI^{5,6}, Kazuto AKAGI^{2,5}, Yasuaki HIRAOKA^{2,5,6,7} ¹Tokyo University of Science, ²MI2I-NIMS, ³High Energy Accelerator Research Organization(KEK), ⁴National Institutes for Quantum and Radiological Science and Technology (QST), ⁵Tohoku Univ. AIMR, ⁶RIKEN AIP, ⁷Kyoto Univ. KUIAS

B3-11-016

18:20-18:40

Fractal dimension, persistent homology dimension, and fractal dynamics in the terahertz region: the case of protein lysozyme

<u>Tatsuya MORI</u>¹, Yasuhiro FUJII², Suguru KITANI³, Yohei YAMAMOTO¹, Kentaro SHIRAKI¹, Akitoshi KOREEDA², Seiji KOJIMA¹

¹University of Tsukuba, ²Ritsumeikan University, ³Tokyo Institute of Technology

OSIUM A

16:30-17:00

17:00-17:30

17:30-17:50

17:50-18:10

18:10-18:30

B3-13-I04 ► Invited

Modeling of Entangled Polymer Dynamics

Yuichi MASUBUCHI, Takashi UNEYAMA

3-Dimensional Topology and Poly-continuous Pattern Koya SHIMOKAWA

Saitama University

Nagoya University

B3-13-005

B3-13-003

11:20-11:40

10:30-10:50

10:50-11:20

Rouse Dynamics of Topological Polymers and Polymer Networks Through Gaussian Random Graph Embeddings

Tetsuo DEGUCHI Ochanomizu University

- December 13, 2019

Oral Session 8

Time 14:00-15:50 Room Port-2

B3-13-I06 Invited 14:00-14:30

Carbon Structures and a Discrete Surface Theory Hisashi NAITO¹, Toshiaki OMORI², Chen TAO³,

Motoko KOTANI⁴

¹Graduate School of Mathematics, Nagoya University, ²Cifra Co., Ltd, ³Mathematical Institute, Tohoku University, ⁴AIMR, Tohoku University

B3-13-007

14:30-14:50

Eigenvalues of the Laplacian on the Goldberg-Coxeter Constructions for 3- and 4-valent Graphs

Toshiaki OMORI¹, Hisashi NAITO², Tatsuya TATE³ ¹Cifra Co., Ltd., ²Nagoya University, ³Tohoku University

B3-13-008

14:50-15:10

Mathematically-designed graphene in electrochemical water splitting

Yoshikazu ITO University of Tsukuba

B3-13-009

15:10-15:30

Bond Twist and Curvature in Three-Dimensional Carbon Networks

Andreas DECHANT

Advanced Institute for Materials Research, Tohoku University

B3-13-010

15:30-15:50

Mathematical Approach for Molecular Conduction

Yuta TSUJI, Kazunari YOSHIZAWA Kyushu University

Challenge with mathematics to fabricate microstructures using minimal surfaces Seiichi TAKAMI¹, Rikuto TAKAI¹, Toshiaki TAIRA², Akira ENDO² ¹Nagoya University, ²National Institute of Advanced Industrial Science and Technology

December 13, 2019

Oral Session 9

Time 16:30-18:00 Room Port-2

B3-13-012

B3-13-I11

17:00-17:20

16:30-17:00

Variational problem for anisotropic surface energy Miyuki KOISO, Yoshiki JIKUMARU Kyushu University

B3-13-013

17:20-17:40

17:40-18:00

Comparison inequalities on directed graphs under a lower Ollivier Ricci curvature bound

Yohei SAKURAI

Invited

Tohoku University

B3-13-014

Development of Metal Coordinate Surfactants (MCSs) as Functional Nanomaterials

Toshiaki TAIRA, Tomohiro IMURA, Akira ENDO National Institute of Advanced Industrial Science and Technology

December 12, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

B3-12-P01

Gapless states on topological defects

Minoru ETO Yamagata University

B3-12-P02

Nanoscale Heat Engines Based on Magnon-Phonon **Coupled States** Koji SATO

Tohoku University

B3-12-P03

First-principles study of the Chern insulator induced by spin chirality

Hikaru SAWAHATA¹, Naoya YAMAGUCHI¹, Fumiyuki ISHII² ¹Graduate School of Natural Science and Technology, Kanazawa University, ²Nanomaterials Research Institute, Kanazawa University

B3-12-P04

Photocleavable Regenerative Star Poly(dimethyl

siloxane) Networks for the Tuning of Viscoelasticity Satoshi HONDA, Minami OKA, Taro TOYOTA The University of Tokyo

B3-12-P05

Rheology of Cholesteric Blue Phases

<u>Shuji FUJII</u> Hokkaido University

B3-12-P06

Physical Implementation of Swarm Intelligence in Colloidal Particle Systems

<u>Bokusui NAKAYAMA¹, Toshiharu SAIKI¹, Eiji YAMAMOTO¹, Masashi KUWAHARA²</u>

¹Keio University, ²National Institute of Advanced Industrial Science and Technology

B3-12-P07

Upgrade Design of the Diffractometer for Small Angle Scattering using tender X-ray at BL-15A2 at the Photon Factory

<u>Hideaki TAKAGI</u>¹, Noriyuki IGARASHI¹, Yasuko NAGATANI¹, Hiromasa OHTA², Nobutaka SHIMIZU¹

 $^1\mbox{High Energy}$ Accelerator Organization, $^2\mbox{Mitsubishi}$ Electric System & Service Co., Ltd

B3-12-P08

Fluid Mechanical Duality for Minimal Surfaces in Euclidean Space and Maximal Surfaces in Spacetime

Shintaro AKAMINE Nagoya University

B3-12-P09

Graphene Encapsulation Effects on NiMo Alloy in Oxygen Evolution Reaction

Samuel JEONG¹, Kailong HU¹, Tatsuhiko OHTO², Yuki NAGATA³, Hideki MASUDA¹, Jun-ichi FUJITA¹, Yoshikazu ITO^{1,4}

¹University of Tsukuba, ²Osaka University, ³Max Plank Institute, ⁴PRESTO

B3-12-P10

Preparation of Metal-Organic Framework Templated

Carbons and Applications to Electrode Materials Hirofumi YOSHIKAWA

Kwansei Gakuin University

B3-12-P11

Topological Data Analysis of Amorphous Carbon at High-Temperature Kazuto AKAGI

Tohoku University

Symposi

— December 11, 2019 — Symposium B-4

Topological Materials Science for

Innovative Functions

[Organizer]

Shuichi MURAKAMI (Tokyo Institute of Technology)

[Sponsor]

国立研究開発法人科学技術振興機構 Japan Science and Technology Agency

December 11, 2019

Oral Session 1

Time 9:00-11:30 Room Work-8

Chairperson Akio KIMURA

B4-11-001

9:20-9:40

Anomalous dielectric response in insulators with the $\boldsymbol{\pi}$ Zak phase

<u>Shuichi MURAKAMI</u>¹, Motoaki HIRAYAMA², Yusuke AIHARA¹ ¹Tokyo Institute of Technology, ²RIKEN

B4-11-002

9:40-10:00

Symmetry indicators for topological superconductors

University of Tokyo

B4-11-I03 ► Invited

10:00-10:30

Real-space recipes of topological crystalline states Chen FANG

Chinese Academy of Sciences

B4-11-004

10:30-10:50

Variants of symmetry-based indicators in the band theory Ken SHIOZAKI

Kyoto University

B4-11-005

10:50-11:10

Electrides as a New Platform of Topological Materials <u>Motoaki HIRAYAMA¹</u>, Satoru MATSUISHI², Hideo HOSONO², Shuichi MURAKAMI³

¹RIKEN, Center for Emergent Matter Science, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³Department of Physics, Tokyo Institute of Technology

B4-11-006

11:10-11:30

Predicting topological materials by symmetry-based indicators

Tiantian ZHANG^{1,2}

¹Institute of Physics, CAS, ²Tokyo Institute of Technology

December 11, 2019

Oral Session 2

Time 14:00-16:00 Room Work-8

Chairperson Motoaki HIRAYAMA

B4-11-I07 ► Invited

14:00-14:30

14.30-14.50

14:50-15:10

Incorporating Magnetism into Topological Materials for Innovative Functions

Hiroshima University

B4-11-008

Flexible Hall sensor using the anomalous Hall effect of

nanocrystalline Fe-Sn films <u>Kohei FUJIWARA</u>¹, Yosuke SATAKE¹, Junichi SHIOGAI¹, Takeshi SEKI^{1,2}, Atsushi TSUKAZAKI^{1,2} ¹IMR, Tohoku University, ²CSRN, Tohoku University

B4-11-009

High-resolution angle-resolved photoemission study of topological heterostructures

Kosuke NAKAYAMA Tohoku University

B4-11-I10 ► Invited

15:10-15:40

15:40-16:00

Exploring Topological States Coupled to Charge Density Wave

Kyoko ISHIZAKA The University of Tokyo

B4-11-011

Ab initio calculation of surface states and ARPES of Weyl semimetal candidate material MoTe₂

Ryota ONO¹, Alberto MARMODORO², Jan MINÁR³, Yoshitaka NAKATA¹, Hubert EBERT², Jürgen BRAUN², Kazuyuki SAKAMOTO⁴, Peter KRÜGER¹ ¹Chiba University, ²Ludwig-Maximilians-Universität München, ³University of West Bohemia, ⁴Osaka University

15:1

	December	11,2019
	Oral See	ssion 3
	ime 16:30-18:30	Room Work-8
Chairperso	n Shuichi MURAK	CAMI
B4-11-012		16:30-16:50
<u>Masaki UC</u> Ryosuke K Atsushi M Masashi K	<u>HIDA</u> ^{1,2} , Shinichi NISI (URIHARA ³ , Kazuto (YAKE ³ , Yasujiro TAI (AWASAKI ^{1,4} ent of Applied Physi	t Observed in Cd ₃ As ₂ Films HIHAYA ¹ , Yusuke NAKAZAWA ¹ , AKIBA ³ , Markus KRIENER ⁴ , GUCHI ⁴ , Masashi TOKUNAGA ³ , cs, University of Tokyo, ity of Tokyo, ⁴ RIKEN CEMS
B4-11-I13	► Invited	16:50-17:20
from Ab-In Jan-Philip	itio Theory	mplex Magnetic Materials
B4-11-014		17:20-17:40
Magnetic s Shinichiro University	<u>SEKI</u>	osymmetric materials
B4-11-l15	► Invited	17:40-18:10
Takao SAS		uantum Materials
B4-11-016		18:10-18:30
Topologica Epitaxial C	al Insulators via No rystal Growth and <u>ANIGAKI</u> , Yu Steph HUYNH	
	December	11, 2019 ————
	Poster S	ession
	ime 19:00-20:30	Room Trade-0
Dimer Drive Khoa LE	nd Catenoid Surface en by Surface Ten versity of Science	ces in a Liquid Crystalline sion

B4-11-P02

Chirality Imaging Using X-ray Wave Front With Topological Defects

<u>Yoshiki KOHMURA</u>¹, Kei SAWADA¹, Masaichiro MIZUMAKI², Kenji OHWADA³, Tetsu WATANUKI³, Tetsuya ISHIKAWA¹ ¹RIKEN, ²Japan Synchrotron Radiation Research Institute, ³National Institutes for Quantum and Radiological Science and Technology (QST)

Cluster C

Novel Structural Materials Based on New Principles

Symposium

- C-1 Fundamental Issues of Structural Materials
- C-2 Mille-feuille Structured Light-weight Materials
- C-3 Hard and Tough Ceramics
- C-4 Tough Polymers

- December 11–12, 2019 – Symposium C-1

Fundamental Issues of Structural Materials

[Organizers]

Isao TANAKA (Kyoto University) Haruyuki INUI (Kyoto University) Nobuhiro TSUJI (Kyoto University) Hyoung Seop KIM (Pohang University of Science and Technology) Guillaume LAPLANCHE (Ruhr-Universität Bochum)

December 11, 2019 -

Oral Session 1

Time 9:00-11:20 Room Mont-1

Chairpersons Nobuhiro TSUJI, Cem TASAN

C1-11-K01 • Keynote

9:00-9:40

Overcoming the limits of the TRIP-effect utilizing reverse transformations

<u>Cem TASAN</u>, Shaolou WEI

Department of Materials Science and Engineering, Massachusetts Institute of Technology

C1-11-002

9:40-10:00

Preferential Ultra Fine Grain Formation in Harmonic Structure Designed SUS304L Austenitic Stainless Steel

Kei AMEYAMA¹, Masashi NAKATANI², Bhupendra SHARMA¹, Mie KAWABATA¹

¹Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, ²Graduate School of Science and Engineering, Ritsumeikan University

Break
10:00-10:10

C1-11-I03 ► Invited

10:10-10:40

Multiple Strengthening and Microstructure Optimization of Heterostructured High-Entropy Alloy

Hyoung Seop KIM

Department of Materials Science and Engineering, Pohang University of Science and Technology

C1-11-004

10:40-11:00

Effect Of Microalloying On Microstructure And Mechanical Properties Of Cast Al_{0.6}CoCrFeNi Compositionally Complex Alloys.

<u>Alex ASABRE¹</u>, Aleksander KOSTKA², Janine PFETZING-MICKLICH², Oleg STRYZHYBORODA³, Ulrike HECHT³, Guillaume LAPLANCHE¹ ¹Ruhr-Universität Bochum (RUB), Bochum, D-44780, Germany, ²Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH), RUB, Bochum D-44780, Germany, ³ACCESS e.V., Aachen, D-52072, Germany

C1-11-005

11:00-11:20

In-situ characterization of heterogeneous deformation behavior in a Fe-Ni-C alloy using neutron diffraction, DIC and thermography

<u>Wu GONG^{1,2}</u>, Stefanus HARJO², Wenqi MAO³,

Takayuki YAMASHITA², Nobuhiro TSUJI^{1,3}

¹Elements Strategy Initiative for Structural Materials, Kyoto University, ²J-PARC Center, Japan Atomic Energy Agency, ³Department of Materials Science and Engineering, Kyoto University

December 11, 2019 -

Oral Session 2

Time 14:00-16:10 Room Mont-1

Chairpersons Haruyuki INUI, John LEWANDOWSKI

C1-11-K06 • Keynote

14:00-14:40

Pressure/Stress State Effects on Fundamental Mechanisms of Plastic Deformation in Structural Materials

John LEWANDOWSKI

Department of Materials Science and Engineering, Case Western Reserve University

C1-11-I07 ► Invited

14:40-15:10

The Atomic Structure and Dynamic Behavior of Twinning Dislocation of Rhombohedral Twinning in α -Al₂O₃

<u>Eita TOCHIGI</u>¹, Bin MIAO¹, Naoya SHIBATA^{1,2}, Yuichi IKUHARA^{1,2,3} ¹Institute of Engineering Innovation, The University of

¹Institute of Engineering Innovation, The University of Tokyo, ²Japan Fine Ceramic Center, ³ESISM, Kyoto University

Invited

15:20-15:50

Room Temperature Deformation Behavior of Hard Intermetallic Compounds Investigated by Micropillar Compression Method

Kyosuke KISHIDA, Haruyuki INUI

Department of Materials Science and Engineering, Kyoto University

C1-11-009

C1-11-I08

15:50-16:10

Interdiffusion In Quaternary Cr-Fe-Co-Ni High-Entropy Alloys

<u>Adeline DURAND</u>¹, Linqing PENG^{2,3}, Ying YANG², Guillaume LAPLANCHE¹, James R MORRIS^{2,4}, Gunther EGGELER¹, Easo P GEORGE^{2,4}

¹Institut für Werkstoffe, Ruhr-Universität Bochum (RUB), ²Materials Science and Technology Division, Oak Ridge National Laboratory, ³Grinnell College, Iowa, ⁴Department of Materials Science and Engineering, University of Tennessee

December 11, 2019 **Oral Session 3**

Time 16:30-18:30 Room Mont-1

Chairpersons Kyosuke KISHIDA, Guillaume LAPLANCHE

C1-11-I10 Invited

16:30-17:00

Kinetics of phase decomposition in high-entropy alloys and effects on mechanical properties

Guillaume LAPLANCHE¹, Sondre BERGLUND¹, Christian REINHART¹, Aleksander KOSTKA², Easo P. GEORGE^{3,4}

¹Institut für Werkstoffe, Ruhr-Universität Bochum, ²Zentrum für Grenzflächendominierte Höchstleistungswerkstoffe (ZGH), Ruhr-Universität Bochum, ³Materials Science and Technology Division, Oak Ridge National Laboratory, ⁴Department of Materials Science and Engineering, University of Tennessee

C1-11-011

17:00-17:20

Deformation behavior and microstructure evolution in equi-atomic CoCrFeMnNi high-entropy alloy highly deformed by torsion at elevated temperatures

Reza GHOLIZADEH¹, Yu BAI^{1,2}, Akinobu SHIBATA^{1,2}, Nobuhiro TSUJI^{1,2}

¹Department of Materials Science & Engineering, Kyoto University, ²ESISM (Elements Strategy Initiative for Structural Materials), Kyoto University

C1-11-012

Break 17:20-17:30

17:30-17:50

Microstructure and mechanical properties of equimolar TiZrNbHfTa High-Entropy Alloy Prepared via Powder Metallurgy

Bhupendra SHARMA¹, Eri AKADA², Naoto TOGAWA², Mie KAWABATA³, Kei AMEYAMA³

¹Ritsumeikan University Research Organization of Science and Technology, Kusatsu City, 525-8577, Japan, ²Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu City, 525-8577, Japan., ³Faculty of Science and Engineering, Ritsumeikan University, Kusatsu City, 525-8577, Japan

C1-11-013

17:50-18:10

Formation of the thermal vacancy in high entropy alloys Taichi ABE¹, Ikuo OHNUMA¹, Toshiyuki KOYAMA²

¹Research Center for Structural Materials, National Institute for Materials Science, ²Department of Materials Design Innovation Engineering, Graduate School of Engineering, Nagoya University

C1-11-014

18:10-18:30

Experimental determination and thermodynamic evaluation of Cr-Mn-Ni system

Katsunari OIKAWA

Department of Metallurgy, Graduate School of Engineering, Tohoku University

— December 12, 2019 —	
Oral Session 4	

Time 9:00-11:20 Room Mont-1

Chairpersons Shigenobu OGATA, Yunzhi WANG

C1-12-K01 ► Keynote

Uncovering the deformation mechanisms of ordered intermetallic phases in Ni-base superalloys

Yunzhi WANG

Department of Materials Science and Engineering, The Ohio State University

C1-12-002

9.40-10.00

9:00-9:40

Deformation mechanism and mechanical properties of mixed amorphous-crystalline system through atomic simulations

Tomotsugu SHIMOKAWA

Department of Mechanical Systems Engineering, Kanazawa University

10:10-10:40

Invited Modeling of pop-ins in nanoindentation

Shigenobu OGATA^{1,2}, Takahito OHMURA^{3,2}, Yuji SATO¹, Shuhei SHINZATO¹

¹Graduate School of Engineering Science, Osaka University, ²ESISM, Kyoto University, ³National Institute for Materials Science

C1-12-004

C1-12-I03

10:40-11:00

Bidirectional Stability Breaking in Thermodynamic Average for Multicomponent Alloys

Koretaka YUGE

Department of Materials Science and Engineering, Kyoto University

C1-12-005

11:00-11:20

Reactive Molecular Dynamics Simulation of Intergranular Stress Corrosion Cracking Process of FeNiCr-based High Entropy Alloy

Narumasa MIYAZAKI, Chang LIU, Qian CHEN, Momoji KUBO

Institute for Materials Research, Tohoku University

Symposium C

December 12, 2019	
Oral Session 5	
Time 14:00-15:55 Room Mont-	1
Chairperson Takahito OHMURA	
C1-12-006	14:00-14:15

Microscopic mechanism of hydrogen-related fracture in 2Mn-0.1C steel with ferrite microstructure

Kazuho OKADA¹, Akinobu SIBATA^{1,2}, Wu GONG^{2,3}, Nobuhiro TSUJI^{1,2}

¹Department of Materials Science and Engineering, Kyoto University, ²Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, ³J-PARC Center, Japan Atomic Energy Agency

C1-12-007

14:15-14:30

Effect of serration on deformation behavior in high-Mn austenitic steel

SUK YOUNG HWANG¹, Myeong-Heom PARK², Yu BAI¹, Akinobu SHIBATA^{1,2}, Nobuhiro TSUJI^{1,2}

¹Department of Materials Science and Engineering, Kyoto University, ²Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University

C1-12-008

14:30-14:45

Microstructural origin of high work-hardenability in ultrafine-grained CoCrNi medium entropy alloy

Shuhei YOSHIDA¹, Genki YAMASHITA¹, Takuto IKEUCHI¹, Yu BAI^{1,2}, Akinobu SHIBATA^{1,2}, Nobuhiro TSUJI^{1,2}

¹Department of Materials Science and Engineering, Kyoto University, ²Element Strategy Initiative for Structural Materials (ESISM), Kyoto University

C1-12-009

14:45-15:00

Mechanical properties and strengthening mechanism of ultrafine grained Al-Mg alloys

Xiaodong LAN¹, Si GAO¹, Myeong-heom PARK^{1,2}, Akinobu SHIBATA^{1,2}, Nobuhiro TSUJI^{1,2}

¹Department of Materials Science and Engineering, Kyoto University, ²Element Strategy Initiative for Structural Materials (ESISM), Kyoto University

C1-12-010

15:10-15:25

Influence of Deformation Temperature on Mechanical Properties of Harmonic Structure Designed SUS316L Austenitic Stainless Steel

Koki YAGI¹, Masashi NAKATANI¹, Bhupendra SHARMA², Mie KAWABATA³, Cinzia MENAPACE⁴, Kei AMEYAMA³ ¹Graduate School of Science and Engineering, Ritsumeikan University, ²Ritsumeikan University Research Organization of Science and Technology, ³Faculty of Science and Engineering, Ritsumeikan University, ⁴Faculty of Industrial Engineering, University of Trento

C1-12-011

Harmonic Structure Design of Fe-0.3wt% Carbon Steel with Outstanding Strength and Toughness

Ryohei IRITANI¹, Kenta HORI¹, Bhupendra SHARMA², Mie KAWABATA³, Kei AMEYAMA³

¹Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu City, 525-8577, Japan., ²Ritsumeikan University Research Organization of Science and Technology, Kusatsu City, 525-8577, Japan., ³Faculty of Science and Engineering, Ritsumeikan University, Kusatsu City, 525-8577, Japan.

C1-12-012

15:40-15:55

15:25-15:40

Mechanical Properties of Harmonic Structure Designed CrMnFeCoNi High Entropy Alloy

Naoto TOGAWA¹, Bhupendra SHARMA², Zhang ZHE³, Mie KAWABATA⁴, Xu CHEN³, Kei AMEYAMA⁴

¹Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu City, 5258577, Japan, ²Ritsumeikan University Research Organization of Science and Technology, Kusatsu City, 5258577, Japan, ³Tianjin University, Tianjin, 300072, China, ⁴Facility of Science and Engineering, Ritsumeikan University, Kusatsu City, 5258577, Japan

- December 12, 2019 -

Oral Session 6

Time 16:30-17:30 Room Mont-1

Chairperson Kaneaki TSUZAKI

C1-12-013

16:30-16:45 Unique deformation structure evolution in a harmonic

structure designed Ti-24Nb-25Zr alloy

Kentaro NAGANO¹, Sharma BHUPENDRA², Mie KAWABATA³, Kei AMEYAMA³

¹Ritsumeikan University of Mechanical Engineering, ²Ritsumeikan University Research Organization of Science and Technology, ³Faculty of Mechanical Engineering, Ritsumeikan University

C1-12-014

16:45-17:00

17:00-17:15

Influences of Multi-Thermo-Mechanical Process on Ti Harmonic Structured compacts

Akito SHIMAMURA¹, Motoki MIYAKOSHI¹, Bhupendra SHARMA², Mie KAWABATA³, Kei AMEYAMA³ ¹Graduate School of Science and Engineering, Ritsumeikan University, Japan, ²Ritsumeikan University Research Organization of Science and Technology, Japan, ³Faculty of Science and Engineering, Ritsumeikan University, Japan

C1-12-015

Effect of Thermo-mechanical Processing on Fatigue Properties of Commercially Pure Titanium with Harmonic Structure

Kohei OSAKI¹, Shoichi KIKUCHI², Yoshikazu NAKAI¹, Mie KAWABATA³, Kei AMEYAMA³

¹Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, ²Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, ³Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University

C1-12-016

17:15-17:30

Effect of Microstructures on Mechanical and Electrical Properties of Aluminum-Carbon Nanotube (Al-CNT) composites

<u>Kazuaki AOI</u>¹, Fumio OGAWA², Mie KAWABATA², Takamoto ITOH², Kei AMEYAMA²

¹Graduate school of Science and Engineering, Ritsumeikan University, ²College of Science and Engineering, Ritsumeikan University

> December 11, 2019 — Poster Session Time 19:00–20:30 Room Trade-0

C1-11-P01

The Coadsorption Effect of CI- and H_2O on the Various Defect Al_2O_3 Film Surface

<u>Chuan-Hui ZHANG</u> University of Science and Technology Beijing

C1-11-P02

Overcoming the strength-ductility trade-off dilemma in TRIP-assisted multiphase steel with lean alloy composition

Avala LAVAKUMAR Kyoto University

C1-11-P03

Effect of Texture Change on Strain-Induced Martensitic Transformation of Semi-Austenitic Stainless Steel SUS304

<u>Taku MATSUO</u>, Tatsuya GOTOH, Kyoichi ISHIDA, Muneyuki IMAFUKU Tokyo City University

C1-11-P04

Influence of Atomic Size Difference on Dislocation Emission from Grain Boundaries in High-Entropy Alloys

<u>Kohei SHIOTANI</u>, Tomoaki NIIYAMA, Tomotsugu SHIMOKAWA Kanazawa University

C1-11-P05

Study of thermodynamic stability of HEA alloy using first principles calculation

<u>Masanori ENOKI</u>, Hiroshi OHTANI Institute of Multidisciplinary Research for Advanced Materials , Tohoku University

C1-11-P06

Vacancy migration behavior in a CoCrFeMnNi high entropy alloy

Kazuki SUGITA¹, <u>Ryusei OGAWA¹</u>, Masataka MIZUNO¹, Hideki ARAKI¹, Atsushi YABUUCHI², Atsushi KINOMURA² ¹Graduate School of Engineering, Osaka University, ²Institute for Integrated Radiation and Nuclear Science, Kyoto University

C1-11-P07

Excellent Mechanical Behavior with Anomalous Glassy State of High-Pressure Heat-Treated Zr-Based Bulk Metallic Glass

<u>Yasuto ABE¹, Rui YAMADA², Yuki SHIBAZAKI³,</u> Wookha RYU², Junji SAIDA²

¹Graduate Scool of Engineering, Tohoku Unversity, ²Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, ³National Institute for Materials Science (NIMS)

- December 12–13, 2019 – Symposium C-2

Mille-feuille Structured Light-weight Materials

[Organizers]

Eiji ABE (University of Tokyo) Yoshihito KAWAMURA (Kumamoto University) Hiromu SAITO (Tokyo University of Agriculture and Technology)

December 12, 2019

Oral Session 4

Time 9:00-11:30 Room Work-8

Chairperson Eiji ABE

C2-12-001

9:00-9:30

Strengthening of Mg-based LPSO-phase alloys induced by the formation of deformation kink band, and its development to other Mille-feuille structured materials

Koji HAGIHARA¹, Michiaki YAMASAKI²,

Yoshihito KAWAMURA², Takayoshi NAKANO¹ ¹Osaka University, ²Magnesium Research Center & Department of Materials Science, Kumamoto University

C2-12-002

9:30-9:50

Fatigue in Extruded Mg/LPSO two-phase alloys: a Combined Experimental-Numerical Study

<u>Fabien BRIFFOD</u>, Takayuki SHIRAIWA, Manabu ENOKI The University of Tokyo

C2-12-003

9:50-10:10

Hardness properties and microstructures of caliber rolled Mg-Y-Zn alloy

Hidetoshi SOMEKAWA¹, Daisuke ANDO²

¹National Institute for Materials Science, ²Tohoku University

C2-12-004

10:20-10:50

Influence of Multimodal Microstructure Evolution on Corrosion Behavior of Extruded Mg-Zn-Y Alloys with Mille-feuille Structure of α -Mg and LPSO phases

<u>Michiaki YAMASAKI</u>¹, Tomohiro KAWAKAMI¹, Zhiming SHI², Andrej ATRENS², Yoshihito KAWAMURA¹ ¹Kumamoto University, ²The University of Queensland

C2-12-005

Effects of Pre-Straining and Heat-Treatment on Compression Strength in a Directionally Solidified Long Period Stacking Ordered Type Mg-Zn-Y Alloy

Mayumi SUZUKI¹, Tatsuya YAMAGUCHI², Yuki TAKAHASHI³, Koji HAGIHARA⁴

¹Toyama Prefectural University, ²Graduate Student, Toyama Prefectural University, ³Undergraduate Student, Toyama Prefectural University (Now with Toyama Murata Manufacturing Co., Ltd), ⁴Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University

C2-12-006

11:10-11:30

10:50-11:10

In Situ Neutron Diffraction during Compression or Tension of $Mg_{_{97}}Zn_1Y_2consisting$ of LPSO phase and αMg phase

<u>Stefanus HARJO</u>¹, Kazuya AIZAWA¹, Wu GONG^{1,2}, Takuro KAWASAKI¹

¹Japan Atomic Energy Agency, ²Kyoto University

December 12, 2019

Oral Session 5

Time 14:00-16:00 Room Work-8

Chairperson Toshiyuki FUJII

C2-12-007

Formation and Annihilation of Disclination in Kink Microstructure

<u>Tomonari INAMURA</u> Tokyo Institute of Technology

C2-12-008

14:30-15:00

14:00-14:30

FTMP-based Descriptions of Rotational Field Evolutions

Kobe University

C2-12-009

15:00-15:20

FTMP-based Kink Deformation and Strengthening Mechanisms for Mille-feuille Structures Yuta NAWA, Tadashi HASEBE Kobe University

C2-12-010

15:20-15:40

Solute Segregation at Kink Boundaries in Mille-feuille Structured Mg Alloys

Daisuke EGUSA¹, Eiji ABE^{1,2}

 $^{\rm 1}\mbox{The University of Tokyo, <math display="inline">^{\rm 2}\mbox{National Institute for Materials Science}$

C2-12-011

15:40-16:00

Mechanical Properties of two-phase Nb-TiNi alloys with Mille-feuille Structure

<u>Kazuhiro ISHIKAWA</u>¹, Toyoaki SUZUKI², Kiyoshi AOKI² ¹Kanazawa University, ²Kitami Institute of Technology

11:10-11:30

Chairperson Hiromu SAITO

C2-13-001

9:00-9:30

Nanostructure control of organic-silica nanocomposite by using block copolymers as templates

<u>Reiko SAITO</u> Tokyo Institute of Technology

C2-13-002

9:30-9:50

Lamellar Microdomain Structures of Liquid Crystal Block Copolymers under Uniaxial Elongation

<u>Masatoshi TOKITA</u>, Jumpei KURIBAYASHI Tokyo Institute of Technology

C2-13-003

9:50-10:10

Fabrication and Mechanical Properties of Metal Flake Particles/Epoxy Resin Composite

<u>Takashi KUROSE</u>, Yurato SAKO, Hiroshi ITO Yamagata University

C2-13-004

10:10-10:30

Depth-resolved nanostructure analysis of thin block copolymer films undergoing microphase separation examined by tender X-rays

<u>Hiroshi OKUDA</u>¹, Shin-ichi SAKURAI², Noriyuki IGARASHI³, Nobutaka SHIMIZU³, Yusuke TAMENORI⁴, Michiaki YAMASAKI⁵, Yoshihito KAWAMURA⁵

¹Kyoto University, ²Kyoto Inst. Technol., ³KEK PF, ⁴JASRI, ⁵Kumamoto University

C2-13-005

10:30-10:50

The origin of structural stability and solute clustering in Mg-M-Y (M= Ni, Cu, Co, and Zn) alloys with long-period stacking ordered structure

Takao TSUMURAYA¹, Tamio OGUCHI²

¹Magnesium Research Center, Kumamoto University, ²Institute of Scientific and Industrial Research, Osaka University

C2-13-006

10:50-11:10

Local Structural Analysis of Mille-feuille Structured Mg-Zn-Y Alloy using X-ray Fluorescence Holography

<u>Koji KIMURA</u>¹, Takumi NISHIOKA¹, Yuta YAMAMOTO¹, Koji HAGIHARA², Hitoshi IZUNO³, Naohisa HAPPO⁴, Shinya HOSOKAWA⁵, Eiji ABE⁶, Motohiro SUZUKI⁷, Tomohiro MATSUSHITA⁷, Kouichi HAYASHI¹

¹Nagoya Institute of Technology, ²Osaka University, ³National Institute for Materials Science, ⁴Hiroshima City University, ⁵Kumamoto University, ⁶The University of Tokyo, ⁷Japan Synchrotron Radiation Research Institute

C2-13-007

Microstructure Evolution of MgYTM (TM=Zn,Cu,Ni) glass ribbons under constant rate heating

<u>Hiroshi OKUDA</u>¹, Mikihito ITO¹, Shan LIN¹, Michiaki YAMASAKI², Yoshihito KAWAMURA² ¹Kyoto University, ²Kumamoto University

December 12, 2019

Poster Session

Time 16:30-18:00 Room Trade-0

C2-12-P01

High-Strength Polymer through a Microstructure Control

<u>Kentaro MUKUMOTO¹</u>, Koji OKUMA², Daisuke EGUSA¹, Hiromu SAITO², Eiji ABE^{1,3}

¹The Univ. of Tokyo, ²Tokyo University of Agriculture and Technology, ³National Institute for Material Science

C2-12-P02

Hybrid *in situ* neutron diffraction of Mg-based 18R LPSO alloy under compressive deformation

<u>Kazuya AIZAWA</u>¹, Wu GONG², Stefanus HARJO¹, Takuro KAWASAKI¹

¹Japan Atomic Energy Agency, ²Kyoto University

C2-12-P03

Nanostructure distribution analysis in multilayered aluminum alloys by combined use of scalar tomography and scanning small-angle scattering

<u>Shan LIN</u>¹, Hiroshi OKUDA¹, Yukihiro NISHIKAWA² ¹Kyoto University, ²Kyoto Inst. Technol. Kyoto

C2-12-P04

Local Strains around Kinks in Mille-feuille Structured Mg Alloys

<u>Yutaka URAKAWA</u>¹, Daisuke EGUSA¹, Mitsuhiro ITAKURA², Eiji ABE^{1,3}

¹The University of Tokyo, ²Japan Atomic Energy Agency, ³National Institute for Material Science

C2-12-P05

Two-directional Micro-Laue Diffraction Mapping under Compression for Investigation of Kink Deformation Behaver in LPSO Mg Alloys

<u>Shigeru KIMURA</u>, Kazushi SUMITANI, Kentaro KAJIWARA Japan Synchrotron Radiation Research Institute

C2-12-P06

Dependence of Vickers Hardness on Layer Thickness in Electrodeposited Ni-Co-Cu / Cu Multilayered Films

Hiroyuki HAGIWARA

Osaka City University

C2-12-P07

Influence of microstructure evolution on fracture toughness of a rapidly solidified ribbon-consolidated Mg-Zn-Y-Al alloy

<u>Soya NISHIMOTO</u>¹, Michiaki YAMASAKI², Shin-ichi INOUE², Yoshihito KAWAMURA²

¹Graduate Student, Graduate School of Science and Technology, Kumamoto University, ²Magnesium Research Center/Department of Materials Science, Kumamoto University

C2-12-P08

Study on the Two-phase Materials with Mille-feuille Structures with a Stacking of Hard and Soft Phases

Atsushi ISHIZAKA Hokkaido University

C2-12-P09

Evaluation Of The Relationship Between Internal Structures And Mechanical Properties In Mulutilayer Films

<u>Yuki WATANABE</u>¹, Akira ISHIGAMI¹, Shoutaro NISHITUJI¹, Takashi KUROSE², Hiroshi ITO^{1,2}

¹Yamagata University, ²Reserch Center for GREEN Materials and Advanced Prosessing (GMAP)

C2-12-P10

Localized Deformation of Electrodeposited Ni-Co-Cu/Cu Multilayered Films Subjected to Compressive Straining

Yoshihisa KANEKO

Osaka City University

C2-12-P11

Preparation and Mechanical Properties of Metal Flake Particles/Epoxy Resin Composites

<u>Yutaro SAKO</u>, Takashi KUROSE, Hiroshi ITO Yamagata University

- December 11–13, 2019 Symposium C-3

Hard and Tough Ceramics

Organizers

Junichi TATAMI (Yokohama National University) Norimasa NISHIYAMA (Tokyo Institute of Technology) Satoshi KITAOKA (Japan Fine Ceramics Center) Fumihiro WAKAI (Tokyo Institute of Technology)

	— December 11, 2	.019
Oral Session 2		
Ti	me 14:00-16:05 Ro	om Work-6
Chairperson	Norimasa NISHIYAM	A
C3-11-I01	▶ Invited	14:00-14:30
Accommod James WC Heonjune R	dent Hardness and Me lation in Nanocrystallir ILLMERSHAUSER, Boris RYOU, Edward GORZKOV Research Laboratory	ne Ceramics FEIGELSON,
C3-11-I02	► Invited	14:30-14:55
Ultrahigh P		
C3-11-I03	►Invited	14:55-15:20
Continuous Strengthening in Nanotwinned Diamond Bo XU Yanshan University		
C3-11-I04	► Invited	15:20-15:45
of plastic d	eformation	ength and mechanisms
<u>Yanbin WANG</u> ¹ , Feng SHI ¹ , Hiroaki OHFUJI ² , Julien GASC ¹ , Norimasa NISHIYAMA ³ , Tony YU ¹ , Toru SHINMEI ² , Tetsuo IRIFUNE ²		
¹ CARS, Univ Chicago, ² GRC, Ehime Univ, ³ LMS, Institute of Innovative Research, TIT		
C3-11-005		15:45-16:05
Mechanical properties of transparent birefringent aluminosilicate nanoceramics		
<u>Nico Alexander GAIDA</u> ^{1,2} , Norimasa NISHIYAMA ³ , Oliver BEERMANN ⁴ , Atsunobu MASUNO ⁵ , Ulrich SCHÜRMANN ² , Christopher GIEHL ⁴ , Ken NIWA ¹ , Masashi HASEGAWA ¹ , Shrikant BHAT ⁶ , Robert FARLA ⁶ , Lorenz KIENLE ²		
¹ Department of Materials Physics, Nagoya University, ² Institute for Materials Science, Kiel University, ³ Laboratory for Materials and Structures, Tokyo Institute of Technology, ⁴ Institute of Geosciences, Kiel University, ⁵ Graduate School		

of Science and Technology, Hirosaki University, ⁶Deutsches

Elektronen-Synchrotron (DESY)

December 11, 2019			
Oral Session 3			
Time 16:30-18:25 Room Work-6			
Chairperson	n James WOLLME	RSHAUSER	
]
C3-11-I06	▶ Invited		16:30-16:55
Highly Distinctive Mechanical Properties of Ultrafine Nano-polycrystalline Diamond and cBN <u>Hitoshi SUMIYA</u> Sumitomo Electric Industries, Ltd.			trafine
C3-11-I07	►Invited		16:55-17:20
dopant dist Ryo ISHIK/ Yuichi IKUI ¹ University	tomic structure and tribution in Ce-dop AWA ^{1,2} , Naoya SHIB, HARA ^{1,3} of Tokyo, ² JST PRE ational Institute for N	<mark>ed cubic boron n</mark> ATA ^{1,3} , Takashi TA STO, ³ Japan Fine	i tride NIGUCHI ³ ,
C3-11-I08	►Invited		17:20-17:45
Crack-resistant and High Elastic Modulus Oxide Glasses Prepared by a Levitation Technique <u>Atsunobu MASUNO</u> Hirosaki University			
C3-11-009			17:45-18:05
Fabrication of Transparent Ceramics by Colloidal Processing and SPS <u>Tohru S. SUZUKI</u> National Institute for Materials Science			
C3-11-010			18:05-18:25
Nanopolycrystalline β -Si ₃ N ₄ and γ -Si ₃ N ₄ : their mechanical and physical properties <u>Norimasa NISHIYAMA</u> , Fumihiro WAKAI Tokyo Institute of Technology			
	December 1	12, 2019 ——	1
	Oral Ses		
Ti	me 9:00-11:25	Room Work-6	
Chairperson	ns Jun-ichi TATAM	l, Koji MORITA	

C3-12-K01 ►Keynote

Polymer-Derived Ceramics --- 40 Years of Research and Innovation in Advanced Ceramics Ralf Peter RIEDEL TU Darmstadt

C3-12-102 ► Invited 9:30-9:55 Novel Metal Nitrides Synthesized under High Pressures - Compression Behaviors, Crystal Chemistry and

Electronic States -Masashi HASEGAWA Nagoya University Symposium F

тау0уа

9:55-10:15

High-pressure Synthesis of Nitride Hard-materials.

Fumio KAWAMURA, Hitoshi YUSA, Takashi TANIGUCHI National Institute for Materials Science

> Break 10:15-10:25

10:25-10:45

High pressure synthesis and compression behavior of hexagonal CrN₂

Ken NIWA, Takurou YAMAMOTO, Takuya SASAKI, Masashi HASEGAWA Nagoya University

C3-12-005

C3-12-004

C3-12-003

10:45-11:05

11:05-11:25

Breakdown characteristics of silicon nitrides

Chika MATSUNAGA¹, You ZHOU¹, Dai KUSANO², Hideki HYUGA¹, Kiyoshi HIRAO¹ ¹National Institute of Advanced Industrial Science and

Technology, ²Japan Fine Ceramics Co., Ltd.

C3-12-006

High-pressure synthesis and crystal structure of MoCtype WN,

Takuya SASAKI¹, Takahide IKOMA¹, Kazuki SAGO¹, Zheng LIU², Ken NIWA¹, Tetsu OHSUNA¹, Masashi HASEGAWA

¹Nagoya University, ²National Institute of Advanced Industrial Science and Technology

- December 12, 2019

Oral Session 5

Time 14:00-15:45 Room Work-6

Chairperson Ken NIWA

C3-12-I07 Invited 14:00-14:25

Room-temperature plastic deformation behavior of ZnS crystals under controlled light conditions

Atsutomo NAKAMURA¹, Yu OSHIMA¹, Katsuyuki MATSUNAGA^{1,2}

¹Nagoya University, ²Japan Fine Ceramics Center

C3-12-008

14:25-14:45

Fabrication of Transparent ZnS by Spark-Plasma-Sintering (SPS) Technique

Koji MORITA, Lihong LIU, Tohru S SUZUKI, Byung-Nam KIM National Institute for Materials Science (NIMS)

C3-12-009

14:45-15:05

Evaluation of Microstructure and Interfacial Strength of Titanium/Oxide Ceramics Sintered Bonding for **Biomaterial Application**

Naritoshi AOYAGI, Ryusuke KOIZUMI, Osamu KATAGIRI National Institute of Technology, Nagaoka College

C3-12-010

15:05-15:25

15:25-15:45

Combustion synthesis of submicron B₄C with induction heating assistance Anna GUBAREVICH

Tokyo Institute of Technology

C3-12-011

Control of coarse defects in ceramics formed by dry-

pressed granules Satoshi TANAKA

Nagaoka University of Technology

December 13, 2019

Oral Session 7

Room Port-1 Time 9:30-11:50

Chairpersons Satoshi KITAOKA, Satoshi TANAKA

C3-13-K01 ►Keynote

9.30-10.00

Nanoscale Dynamic Observations of Grain Boundary Fracture, Deformation and Twin Formation in Ceramics Yuichi IKUHARA

University of Tokyo/JFCC

10:00-10:25

C3-13-I02 ►Invited ULTRA HIGH TEMPERATURE CERAMICS (UHTC) FOR HYPERSONIC SPACE VEHICLES: OPPORTUNITIES AND CHALLENGES

Bikramjit BASU Indian Institute of Science

C3-13-003

10:25-10:45

Electric Field-activated Superplastic Deformation in Tetragonal Zirconia Polycrystals

Hidehiro YOSHIDA¹, Yamato SASAKI², Takahisa YAMAMOTO³ ¹The University of Tokyo, ²Tokyo University of Science, ³Nagoya University

C3-13-I04 ►Invited

10:45-11:10

Extremely Large Room Temperature Strain Tolerant Mechanism of Ceramics

Yutaka KAGAWA

Tokyo University of Technology

C3-13-005

11:10-11:30

Evaluation of Delamination Toughness of Atmospheric Pressure Plasma Sprayed RTa₃O₉ Thermal Barrier Coatings by Simple Shear-loading Method

Makoto TANAKA¹, Shusui OGAWA¹, Daisaku YOKOE¹, Satoshi KITAOKA¹, Yuhei OHIDE², Kaito TAKAGI², Yoichiro HABU²

¹Japan Fine Ceramics Center, ²TOCALO Co., Ltd.

C3-13-006

11:30-11:50

Criteria of interface crack initiation and propagation in environmental barrier coating with columnar layer under thermal stress

Emi KAWAI¹, Hideki KAKISAWA², Norio YAMAGUCHI¹, Taishi YOKOI¹, Atsushi KUBO³, Satoshi KITAOKA¹, Yoshitaka UMENO³

¹Japan Fine Ceramics Center, ²National Institute for Materials Science, ³The University of Tokyo

December 13, 2019		
Oral Session 9		
Time 16:30-18:25 Room Port-1		
Chairperson Hidehiro YOSHIDA		
~		

~

Preparation 16:30-16:45

C3-13-I07 ► Invited

16:45-17:05

Mechanical properties of silicon carbide in mesoscale measured by bending test using microcantilever beam specimens

<u>Junichi TATAMI</u>¹, Yumi IMOTO¹, Tsukaho YAHAGI², Takuma TAKAHASHI², Motoyuki IIJIMA^{1,2} ¹Yokohama National University, ²Kanagawa Institute of

Industrial Science and Technology

C3-13-008

17:05-17:25

17:25-17:45

Microstructure Control of Al₂O₃-ZrO₂ Composites by Electrostatic Nano-Assembly Technique

<u>Wai Kian TAN</u>, Atsushi YOKOI, Go KAWAMURA, Atsunori MATSUDA, Hiroyuki MUTO Toyohashi University of Technology

C3-13-009

Theoretical Analysis of Densification Kinetics in Final

Sintering Stage of Nano-Sized Zirconia <u>Byungnam KIM</u>¹, Tohru S. SUZUKI¹, Koji MORITA¹, Hidehiro YOSHIDA¹, Ji-Guang LI¹, Hideaki MATSUBARA² ¹National Institute for Materials Science, ²Tohoku University

C3-13-010

17:45-18:05

Observation of internal structure of $\rm AI_2O_3$ ceramics by optical coherence tomography

Takuma TAKAHASHI¹, Junichi TATAMI^{1,2}, Fumika SAKAMOTO², Hidetaka ITO¹, Isamu TAGUCHI¹, Motoyuki IIJIMA^{1,2}

¹Kanagawa Institute of Industrial Science and Technology,
²Yokohama National University

C3-13-011

18:05-18:25

Micromechanics of Sintering: Pinch-off of Pore Channel, Formation and Disappearance of a Closed Pore

 $\frac{\text{Fumihiro WAKAl}^1, \text{Gaku OKUMA}^1, \text{Norimasa NISHIYAMA}^1, \\ \text{Olivier GUILLON}^2$

¹Tokyo Institute of Technology, ²Forschungzentrum Julich

December 12, 2019

Poster Session

Time 16:30-18:00 Room Trade-0

C3-12-P01

Synchrotron X-ray CT imaging of processing-induced defects formed during sintering of alumina

Gaku OKUMA¹, Shuhei WATANABE¹, Kan SHINOBE¹, Norimasa NISHIYAMA¹, Akihisa TAKEUCHI², Kentaro UESUGI², Satoshi TANAKA³, Fumihiro WAKAI¹ ¹Tokyo Institute of Technology, ²Japan Synchrotron Radiation Research Institute, JASRI/SPring-8, ³Nagaoka University of Technology

C3-12-P02

Microstructural Design of Composite Materials using Spherical Composite Aggregate Obtained by Electrostatic Nano-assembly Technique

<u>Souta INOUE</u>, Atsushi YOKOI, Wai Kian TAN, Go KAWAMURA, Atsunori MATSUDA, Hiroyuki MUTO Toyohashi University of Technology

C3-12-P03

Development of thermal conductive PMMA based h-BN composite via electrostatic nano-assembly technique

<u>Atsushi YOKOI</u>, Wai Kian TAN, Go KAWAMURA, Atsunori MATSUDA, Hiroyuki MUTO Toyohashi University of Technology

C3-12-P04

Phase Transformation and Conducting fluid of Silicon Nitride at High Pressure and Temperature

Yuji KAMISHIMA Tokyo Institute of Technology

C3-12-P05

Prediction of fracture from various shaped defects by XFEM

<u>Shuhei WATANABE</u>¹, Gaku OKUMA¹, Yosuke SATO², Tomoki SEKIYA¹, Norimasa NISHIYAMA¹, Fumihiro WAKAI¹ ¹Laboratory for Materials and Structures Laboratory, Institute of Innovative Research, Tokyo Institute of Technology, ²Mitsubishi Material Corporation Metalworking Solutions Company

C3-12-P06

Fabrication of polycrystalline cotunnite-type zirconia under high pressure and temperature and its mechanical properties.

<u>Palakrit TINNAKORN</u>, Kouki KANATANI, Norimasa NISHIYAMA, Fumihiro WAKAI Tokyo Institute of Technology

ium H Symposi

C3-12-P07

Fabrication of transparent polycrystalline MgO by combination of spark plasma sintering and high pressure-high temperature synthesis

<u>Masaya ENDO</u>, Gaku OKUMA, Norimasa NISHIYAMA, Fumihiro WAKAI

Tokyo Institute of Technology

C3-12-P08

Synthesis of Single Phase Polycrystals of $\omega\textsc{-Titanium}$ and $\omega\textsc{-Zirconium}$ under High Pressure and Mechanical Characterization

<u>Takashi SAWAHATA</u>¹, Norimasa NISHIYAMA¹, Makoto ARITA², Fumihiro WAKAI¹, Zenji HORITA² ¹Tokyo Institute of Technology, ²Kyushu University

C3-12-P09

Preparation Of Nitride Phosphor Particle Dispersed Glass Composites

<u>Natsumi TORASE¹, Junichi TATAMI^{1,2}, Motoyuki IIJIMA^{1,2},</u> Takuma TAKAHASHI²

¹Yokohama National University, ²Kanagawa Institute of Industrial Science and Technology

C3-12-P10

Observation of Internal Structure of Al₂O₃ Slurry under Shearby Optical Coherence Tomography

<u>Hiroki TAKABA</u>

Yokohama National University

C3-12-P11

Phase relationship of Si₂N₂O

Kota FUKUCHI Tokyo Institute of Technology

C3-12-P12

Influence of rare earth oxide as a sintering aid on translucency of aluminum nitride (AIN) ceramics

Hayato AKIMOTO¹, Junichi TATAMI^{1,2} ¹Yokohama National University, ²Kanagawa Institute of

Industrial Science and Technology

C3-12-P13

Evolution of anisotropic microstructures in free sintering and constrained sintering of Au sub-micron particles observed by FIB-SEM tomography

<u>Ryo MIYAKI</u>¹, Kan SHINOBE¹, Gaku OKUMA¹, Anna SCIAZKO², Takaaki SHIMURA³, Shotaro HARA⁴, Toshinori OGASHIWA⁵, Naoki SHIKAZONO², Norimasa NISHIYAMA¹, Fumihiro WAKAI¹

¹Tokyo Institute of Technology, ²The University of Tokyo, ³Tokyo University of Agriculture and Technology, ⁴Chiba Institute of Technology, ⁵Tanaka Kikinzoku Kogyo

C3-12-P14

Evaluation of rotation behavior of multilayer graphene coated glass fibers in magnetic field via in situ threedimensional dynamic observation

Ibuki AIHARA¹, Takuma TAKAHASHI², Junichi TATAMI^{1,2}, Motoyuki IIJIMA^{1,2}

¹Yokohama National University, ²Kanagawa Institute of Industrial Science and Technology

C3-12-P15

Crystal Structure and Mechanical Properties of Cr doped Mo₂NiB₂

<u>Junya WATANABE</u>, Toshiki OTA, Satofumi MARUYAMA Tokyo City University

C3-12-P16

Metal Doping effects on the microstructure and mechanical properties of boron carbide

<u>Toshiki OTA</u>, Ryuichiro KOYAMA, Koga NAKAMURA, Junya WATANABE, Satofumi MARUYAMA Tokyo City University

C3-12-P17

Mechanical properties of single crystal BaTiO₃ measured using microcantilever beam specimen

<u>Hiroshi YAMAGUCHI</u>¹, Junichi TATAMI^{1,2}, Motoyuki IIJIMA^{1,2} ¹Yokohama National University, ²Kanagawa Institute of Industrial Science and Technology

C3-12-P18

In-situ observation of dewaxing process of ceramic powder compacts by optical coherence tomography

<u>Mayu KATO</u>¹, Junichi TATAMI^{1,2}, Motoyuki IIJIMA^{1,2}, Takuma TAKAHASHI²

¹Yokohama National University, ²Kanagawa Institute of Industrial Science and Technology

C3-12-P19

Mechanical and Optical Properties of Jadeite/Stishovite and Jadeite/Coesite Ceramic Composites

<u>Eleonora KULIK</u>¹, Alena KRUPP^{1,2}, Astrid HOLZHEID¹, Norimasa NISHIYAMA³, Tetsuo IRIFUNE⁴, Christian RUESSEL⁵, Hiroaki OHFUJI⁴, Youmo ZHOU⁴

¹Institute of Geosciences, Kiel University, Kiel, 24118, Germany, ²Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, 95447, Germany, ³Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan, ⁴Geodynamics Research Center, Ehime University, Matsuyama, 790-8577, Japan, ⁵Friedrich-Schiller-University Jena, Jena, 07743, Germany

C3-12-P20

Preparation of HfO₂-Al₂O₃ composite films using chemical vapor deposition and their nanostructures

Shogen MATSUMOTO, Akihiko ITO

Yokohama National University

December 12, 2019

December 12–13, 2019

Symposium C-4

Tough Polymers

Organizer

Kohzo ITO (The University of Tokyo)

December 12, 2019

Oral Session 4

Time 9:00-11:30 Room Work-4

Chairpersons Hideyuki OTSUKA, Zhaomin HOU

C4-12-K01 ► Keynote

9:00-9:40

Fiber Reinforced Hydrogels With Extra-Ordinarily High Toughness

Jian Ping GONG Hokkaido University

C4-12-002

9:40-10:00

Crack Propagation of Slide-Ring Gels

Koichi MAYUMI, Chang LIU, Hideaki YOKOYAMA, Kohzo ITO The University of Tokyo

C4-12-003

10:00-10:20

Reinforcement of Slide-Ring Hydrogel via Strain-induced Crystallization

Chang LIU¹, Lan JIANG¹, Koichi MAYUMI¹, Takamasa SAKAI², Hideaki YOKOYAMA¹, Kohzo ITO¹

¹Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, ²Department of Bioengineering, Graduate School of Engineering, The University of Tokyo

C4-12-I04 ► Invited

10:20-10:50

Velocity Jump in Crack Propagation on Sheet Samples: Nano Scale Glass Transition at a Crack Tip and the Effect of Boundary Condition

Ko OKUMURA Ochanomizu University

C4-12-005

10:50-11:10

Multi-scale Energy Dissipation Mechanism in Tough and Self-healing Hydrogels

Kunpeng CUI¹, Xueyu LI¹, Xiaobin LIANG², Ken NAKAJIMA², Jian Ping GONG¹

¹Hokkaido University, ²Tokyo Institute of Technology

C4-12-006

11:10-11:30

- 143 -

Fatigue Behaviors of Phase Separation Hydrogels: the Effect of Phase Contrast

Xueyu LI¹, Cuipeng CUI², Tao Lin SUN^{1,3}, Takayuki KUROKAWA^{1,3}, Jian Ping GONG^{1,2,3}

¹Soft Matter GI-CoRE, Hokkaido University, ²WPI-ICReDD, Hokkaido University, ³Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University

Oral Session 5		
Time 14:00-16:10 Room Work-4		
Chairpersons Yoshinori TAKASHIMA, Jian Ping GONG		
C4-12-107 ► Invited 14:00-14:3		
Synthesis and Remarkable Self-Healing Properties of Ethylene–Anisylpropylene Copolymers Zhaomin HOU RIKEN Center for Sustainable Resource Science		
C4-12-008 14:30-14:5		
Synthesis of Poly(methyl methacrylate) Based Polyrotaxane via Reversible Addition-Fragmentation Chain Transfer Polymerization <u>YuCheng WANG¹</u> , Rina MAEDA ¹ , Gergely KALI ² , Gerhard WENZ ² , Hideaki YOKOYAMA ¹ , Kohzo ITO ¹ ¹ Graduate School of Frontier Science, University of Tokyo, ² Organische Makromolekulare Chemie, Universität des Saarlandes		
C4-12-109 ► Invited 14:50-15:2		
Mechanofunctional Polymers for Self-healing and Stress Visualization Based on Dynamic Covalent Chemistry <u>Hideyuki OTSUKA</u> , Daisuke AOKI Tokyo Institute of Technology		
C4-12-I10 ► Invited 15:20-15:5		
Design and Functions of Supramolecular Materials Formed by Reversible and Movable Cross-Linkers <u>Yoshinori TAKASHIMA</u> Osaka University		
C4-12-011 15:50-16:1		
Polybutadienes with Urethane Linkages for Rubber Application <u>Yasuhiro SHODA^{1,2}</u> , Daisuke AOKI ² , Katsuhiko TSUNODA ¹ , Hideyuki OTSUKA ²		
¹ Bridgestone Corporation, ² Tokyo Institute of Technology		
December 12, 2019		
Oral Session 6		
Time 16:30-18:30 Room Work-4		
Chairpersons Kohzo ITO, Hiroshi ITO		

C4-12-I12 ► Invited 16:30-17:00

Fracture Behaviors of Amorphous Polymer Blends Fabricated by high Shear Kneading Processing Hiroshi ITO, Akira ISHIGAMI, Kazuki WATANABE,

Yuki KODAMA, Takashi KUROSE, Shotaro NISHITSUJI Yamagata University

C4-12-013

17:00-17:20

The Change of the Density Fluctuations of Amorphous Polymer under Deformation by Using in situ Small Angle X-ray Scattering

SHOTARO NISHITSUJI Yamagata University

C4-12-I14 Invited

17:20-17:50

17:50-18:10

Polyrotaxane Blend Toughened by Movable Crosslinked Structure

Sadayuki KOBAYASHI Chemicals Research Laboratories / Japan

C4-12-015

C4-12-016

Polymer Crystallization under Shear Flow Go MATSUBA, Kun LI

Yamagata University

18:10-18:30

Evaluation of Mechanical Property of Fiber Reinforced Plastics with Extremely Soft Matrix (Soft FRP) from the Perspective of Rehabilitation

Masaki NARISAWA¹, Takahiro KINUGASA¹, Fumihiro INOUE¹, Manabu YAMAGATA², Akiyoshi SAITO³, Junya SUZUKI³, Ryo YONETSU⁴

¹Osaka Prefecture University, ²Kitamura Chemical Co. Ltd., ³Kawamura Gishi Co. Ltd., ⁴Kanagawa University of Human Services

December 13, 2019 -

Oral Session 7

Time 9:00-11:40 Room Work-4

Chairpersons Keiji TANAKA, Taiki HOSHINO

C4-13-I01 Invited 9:00-9:40

Synchrotron Radiation X-ray Scattering Study of Multiphase Polymers under Mechanical Deformation

Atsushi TAKAHARA, Ken KOJIO, Nattanee DECHNARONG, Chao-Hung CHENG

Kyushu University

C4-13-I02 ► Invited

9:40-10:10

Building a New Range of Synchrotron Radiation Application to the Research of Tough Polymers

Taiki HOSHINO¹, Yusuke TAMENORI², Shuji GOTO², Masaki TAKATA³

¹RIKEN SPring-8 Center, ²JASRI, ³Tohoku University

C4-13-003

10:10-10:30

Structural Analysis in Nanocomposite Elastomer with Block Copolymer-Grafted Silica Particles by Synchrotron Radiation X-ray Scattering and Spectroscopy under Various Mechanical Deformation

Chao-Hung CHENG¹, Shuhei NOZAKI¹, Shiori MASUDA¹, Nattanee DECHNARONG¹, Kiyu UNO¹, Kazutaka KAMITANI², Ken KOJIO^{1,2,3}, Atsushi TAKAHARA^{1,2}

¹Graduate School of Engineering, Kyushu University, ²IMCE, Kyushu University, ³WPI-I2CNER, Kyushu University

C4-13-I04 Invited

Innovative Tough Rubber Compound for Environmental Friendly Tire

Katsuhiko TSUNODA Bridgestone Corporation

C4-13-005

11:00-11:20

10:30-11:00

Aggregation States and Thermal Molecular Motion of Fluororubber Chains Adsorbed onto Model Carbon Interfaces

Daiki SAITO¹, Kazuki SASAHARA², Yoshihisa TAKEYAMA³, Mitsugi UEJIMA³, Daisuke KAWAGUCHI², Satoru YAMAMOTO², Keiji TANAKA^{1,2}

¹Department of Automotive Science, Kyushu University, ²Department of Applied Chemistry, Kyushu University, ³Zeon Corporation

C4-13-006

11:20-11:40

16:30-17:00

17:00-17:20

17:20-17:50

Change in Molecular Aggregation State and Rupture Mechanism of Poly(methyl methacrylate) and Polycarbonate Films during Bulge Testing

Ken KOJIO^{1,2,3}, Aya FUJIMOTO¹, Tomoko KAJIWARA¹, Chigusa NAGANO², Chao-Hung CHENG², Shuhei NOZAKI², Shiori MASUDA², Nattanee DECHNARONG² Kazutaka KAMITANI¹, Atsushi TAKAHARA^{1,2,3} ¹Institute for Materials Chemistry and Engineering, Kyushu University, ²Graduate School of Engineering, Kyushu University, ³International Institute for Carbon-Neutral Energy Research, Kyushu University

December 13, 2019

Oral Session 9

Time 16:30-18:30 Room Miel-5

Chairpersons Susumu OKAZAKI, Atsushi TAKAHARA

C4-13-I07

Showered Dynamics of Polymer Dynamics at Inorganicfiller Interface

Keiji TANAKA¹, Hung K. NGUYEN¹, Manabu INUTSUKA², Daisuke KAWAGUCHI¹

¹Kyushu University, ²Kanagawa University

► Invited

C4-13-008

Characterization of Tough Polymer Interfaces by

Interface-Sensitive Spectroscopy Daisuke KAWAGUCHI¹, Shin SUGIMOTO²,

Satoru YAMAMOTO¹, Keiji TANAKA^{1,2}

¹Department of Applied Chemistry, Kyushu University,

²Department of Automotive Science, Kyushu University

C4-13-I09 Invited

All-Atomistic Molecular Dynamics Study of Impact Fracture of Glassy Polymers

Susumu OKAZAKI, Kazushi FUJIMOTO, Zhiye TANG Nagoya University

Symposium C

C4-13-010

17:50-18:10

Network Heterogeneity and Fracture Behavior in Epoxy Resin

<u>Satoru YAMAMOTO</u>, Mika AOKI, Atsuomi SHUNDO, Keiji TANAKA Kyushu University

C4-13-011

18:10-18:30

Stress Relaxation Mechanism of Slide-Ring gels: A Coarse-Grained Molecular Dynamics Simulation Study.

<u>Yusuke YASUDA¹</u>, Koichi MAYUMI¹, Masatoshi TODA², Hideaki YOKOYAMA¹, Hiroshi MORITA², Kohzo ITO¹ ¹Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan., ²National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.

December 13, 2019 -

Poster Session

Time 19:00-20:30 Room Trade-0

C4-13-P01

One-pot synthesis of polyrotaxane with different host coverage and its slide-ring materials

Lan JIANG, Chang LIU, Koichi MAYUMI, Hideaki YOKOYAMA, Kohzo ITO

The University of Tokyo

C4-13-P02

The Synthesis of the Polycyclooctadiene-based Polyrotaxane with Thermally Resistant

Randi ZHANG¹, Lan JIANG¹, Hideaki YOKOYAMA¹, Wen-hua SUN², Kohzo ITO¹

¹University of Tokyo, ²University of Chinese Academy of Sciences

C4-13-P03

Photoregulation of the Heat Resistance in Network Polymers with Diarylethene-conjugated Diels-Alder Cross-links

<u>Jumpei KIDA</u>, Daisuke AOKI, Hideyuki OTSUKA Tokyo Institute of Technology

C4-13-P04

Preparation of Materials with Supramolecular Crosslinking and Their Physical Properties

<u>Ryohei IKURA</u>¹, Junsu PARK¹, Motofumi OSAKI¹, Hiroyasu YAMAGUCHI¹, Akira HARADA², Yoshinori TAKASHIMA^{1,3}

¹Department of Macromolecular Science, Graduate School of Science, Osaka University, ²The Institute of Scientific and Industrial Research, Osaka University, ³Institute for Advanced Co-Creation Studies, Osaka University

C4-13-P05

Synthesis of Reactive Polymer/silica Nanocomposites with Dynamic Covalent Bonds at the Filler-matrix Interface

Shimon KATAOKA

Department of Chemical Science and Engineering, Tokyo Institute of Technology

C4-13-P06

Modification of Amine-Cured Epoxy Resins by Boronic Acids

<u>Yumiko ITO</u>, Daisuke AOKI, Hideyuki OTSUKA Tokyo Institute of Technology

C4-13-P07

Tough and Functional Supramolecular Materials from Polymer Mixtures with Host-guest Interaction between Cyclodextrin and Adamantane

<u>Junsu PARK</u>¹, Motofumi OSAKI¹, Yoshinori TAKASHIMA^{1,2}, Akira HARADA³, Hiroyasu YAMAGUCHI¹ ¹Graduate School of Science, Osaka University, ²IACS, Osaka University, ³ISIR, Osaka University

C4-13-P08

Toughening Polymer Networks via Freezing-Induced Radical Generation Based on Mechanocleavable Fluorescent Dynamic Covalent Bonds

<u>Sota KATO</u>, Daisuke AOKI, Hideyuki OTSUKA Tokyo Institute of Technology

C4-13-P09

Facile Visualization of Molecular-level Slide-ring Effect via Mechanochromic Chemistry

<u>Yi LU</u>, Daisuke AOKI, Hideyuki OTSUKA, Toshikazu TAKATA Tokyo Institute of Technology

C4-13-P10

Force-induced Cross-linking Reaction in a Radical-Type Mechanochromic Polyurethane with Polymerizable Side Chains

Kota SESHIMO, Hio SAKAI, Daisuke AOKI, Hideyuki OTSUKA Tokyo Institute of Technology

C4-13-P11

Supramolecular Ionic Liquid Elastomer based on Host-Guest Interactions

<u>Garry SINAWANG</u>¹, Yuichiro KOBAYASHI¹, Yoshinori TAKASHIMA^{1,2}, Akira HARADA³,

Hiroyasu YAMAGUCHI¹

¹Graduate School of Science, Osaka University, ²Institute for Advanced Co-Creation Studies, Osaka University, ³The Institute of Scientific and Industrial Research, Osaka University

C4-13-P12

Designed Polymer Network Structure Using 4-arm and 2-arm PEGs in Ionic Liquid-Based Electrolytes for Lithium-Ion Batteries

<u>Asumi ISHIKAWA</u>, Kenta FUJII Yamaguchi University

C4-13-P13

Chromonic Aggregates-Incorporated Tough Hydrogels Khoa LE

Tokyo University of Science

C4-13-P14

Relationship between the Dissociation Energy of Reversible Cross-links and Mechanical Properties of Supramolecular Hydrogels with Inculusion Complexes.

<u>Subaru KONISHI</u>¹, Yoshinori TAKASHIMA^{1,2}, Akira HARADA³, Hiroyasu YAMAGUCHI¹

¹Graduate School of Science, Osaka University, ²Institute for Advanced Co-Creation Studies, Osaka University, ³Institute of Scientific and Industrial Research, Osaka University

C4-13-P15

Evaluation of Toughness and Failure Mode of PA6/mSEBS/PS Ternary Blends with and Oil Extended Viscoelastic Controlled Interface

<u>Akira ISHIGAMI</u> Yamagata University

C4-13-P16

Elastomeric Nanocomposites Composed of Silica Nanoparticles with End-Functionalized Rubbery Polymer Brush

 $\underline{\rm Kiyu}\,{\rm UNO}^1,{\rm Atsushi}\,{\rm TAKAHARA}^{1,2,3},{\rm Yuji}\,{\rm HIGAKI}^4,{\rm Ken}\,{\rm KOJIO}^{1,2,3},$ Hitoshi SHIMAMOTO $^1,{\rm Kazutaka}\,{\rm KAMITANI}^2,{\rm Masaru}\,{\rm MUKAI}^2,$ Chao-Hung CHENG 1

¹graduate school of engineering, Kyushu University, ²IMCE, ³WPI-I2CNER, ⁴Faculty of Science technology, Oita University

C4-13-P17

Structural Analysis of Japanese Sweets -Warabi-mochi-<u>Akane NAGASAKI</u>, Go MATSUBA

Yamagata University

C4-13-P18

Precise Structural Analysis Bi-axially Stretched Films Keisuke SOTOYAMA, Go MATSUBA

Yamagata University

C4-13-P19

In Situ Small-Angle X-Ray Scattering Investigation on Mesoscopic Deformation of Thermoplastic Elastomer under Cyclic Elongations

Nattanee DECHNARONG¹, Kazutaka KAMITANI², Chao-Hung CHENG¹, Shiori MASUDA¹, Shuhei NOZAKI¹, Chigusa NAGANO¹, Ken KOJIO^{1,2,3}, Atsushi TAKAHARA^{1,2,3} ¹Graduate School of Engineering, Kyushu University, ²Institute for Materials Chemistry and Engineering, Kyushu University, ³International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University

C4-13-P20

Quasi-two-dimensional coalescence of liquid in another liquid

Yukina Margaret KOGA Ochanomizu University

C4-13-P21

Molecular Dynamics Study of Compressive Fracture of Glassy Polymers

<u>Hiroaki ISHIKAWA</u>, Kazushi FUJIMOTO, Zhiye TANG, Susumu OKAZAKI Graduate School of Engineering, Nagoya University

C4-13-P22

All-atom Molecular Dynamics Study of Impact Fracture of Glassy Polymers: Molecular Mechanism of Brittleness and Ductility

<u>Zhiye TANG</u>, Kazushi FUJIMOTO, Wataru SHINODA, Susumu OKAZAKI Nagoya University

C4-13-P23

Molecular Study of Impact Fracture of Amorphous Polymer I: Brittle and Ductile

Kazushi FUJIMOTO Nagoya University

Cluster D Advanced Electronic Materials

Symposium

- D-1 2D Layered Materials
- **D-2** Novel Concepts of Electronic Materials Inspired from Complementary and Competing Fields
- **D-3** Science and Technology of Superconductivity
- D-4 5th E&J BLS Wide-bandgap and 2-dimensional Materials

- December 11–13, 2019 – Symposium D-1

2D Layered Materials

[Organizers]

Susumu SAITO (Tokyo Institute of Technology) Yoshihiro IWASA (University of Tokyo) Yuanbo ZHANG (Fudan University)

Sponsor

Nanocarbon research committee, Foundation Advanced Technology Institute

December 11, 2019
 Oral Session 1

Time 9:00-11:30 Room Work-4

Chairperson Susumu SAITO

D1-11-K01 ►Keynote

9:30-10:15

Exploring 2D Materials: From Nanopores to Ordered Alloys to e-Beam Induced Circuitry

<u>Alex ZETTL</u> University of California at Berkeley

D1-11-I02 Invited

Optical and vibrational EELS from low-dimensional materials

Kazutomo SUENAGA AIST

D1-11-003

10:45-11:00

10:15-10:45

Change in the photo response by Adsorption of Phthalocyanine Complex Molecules on MoS_2 -FET

<u>Hiroki WAIZUMI</u>¹, Tsuyoshi TAKAOKA², Kazuki WASHIDA¹, Md Iftekharul ALAM¹, Muhammed Shamim Al MAMUN¹, Tat Trung NGUYEN¹, Tadahiro KOMEDA²

¹Faculty of Science, Tohoku University, ²IMRAM, Tohoku University

D1-11-004

11:00-11:15

Molecular adsorption and electronic properties of doped graphene for sensing applications

Yoshitaka FUJIMOTO¹, Susumu SAITO^{1,2,3}

¹Department of Physics, Tokyo Institute of Technology, ²Advanced Research Center for Quantum Physics and Nanoscience, Tokyo Institute of Technology, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology

D1-11-005

Effect of The Adsorption of TCNQ And F4-TCNQ On $\mathsf{MoS}_2\text{-}\mathsf{based}$ FET

<u>Tsuyoshi TAKAOKA</u>, Tat Trung NGUYEN, Md Iftekharul ALAM, Kazuki WASHIDA, Hiroki WAIZUMI, Muhammed Shamim ALMAMUN, Tadahiro KOMEDA Tohoku Univrersity

December 11, 2019 -

Oral Session 2

Time 14:00-16:00 Room Work-4

Chairperson Yoshihiro IWASA

►Keynote

14:00-14:45

11:15-11:30

Quantum transport and robotic fabrication of van der Waals junctions of graphene and 2D materials Tomoki MACHIDA

Institute of Industrial Science, University of Tokyo

D1-11-I07 ► Invited

D1-11-K06

14:45-15:15

Charge transfer dynamics at two-dimensional material/ liquid electrolyte interfaces

<u>Chun-Wei CHEN</u> National Taiwan University

D1-11-008

Honeycomb lattice based electrides: Electronic structures and catalytic applications towards selective hydrogenation

<u>Yangfan LU</u>¹, TIAN NAN YE¹, Jian LI¹, Takuya NAKAO², Yoshitake TODA¹, Shigenori UDEA³, Tomofumi TADA¹, Koji HORIBA⁴, Hiroshi KUMIGASHIRA⁴, Masaaki KITANO¹, Hideo HOSONO¹

¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, ²Laboratory for Materials and Structures, Tokyo Institute of Technology, ³Synchrotron X-ray Station at SPring-8, National Institute for Material Science (NIMS), ⁴Photon Factory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK)

D1-11-009

15:30-15:45

15:45-16:00

Concerted Nanoporosity of H₂O-adsorbed GOs, Evidenced by in-situ X-ray Diffractions

<u>Ryusuke FUTAMURA</u>¹, Taku IIYAMA^{1,2}, Takahiro UEDA^{3,4}, Katsumi KANEKO²

¹Department of Chemistry, Shinshu University, ²Research Initiative for Supra-Materials, Shinshu University, ³The Museum of Osaka University, ⁴Department of Chemistry, Graduate School of Science, Osaka University

D1-11-010

Novel friction induced crystal growth of 2D layered $\mbox{MoS}_{\rm 2}$ on semiconductor surfaces

<u>Tadao TANABE</u>, Takafumi ITO, Junya OSAKI, Chao TANG, Yohei SATO, Yutaka OYAMA Tohoku University

Yukiko YAMADA-TAKAMURA

Japan Advanced Institute of Science and Technology

D1-12-107 Invited 17:00-17:30

Geometric and Electronic Structures of Hybridstructure of 2D Materials

Susumu OKADA University of Tsukuba

D1-12-008

17:30-17:45

Crossover between Orbital limit and Pauli-paramagnetic limit in ultra-thin NbSe₂

Hideki MATSUOKA¹, Masaki NAKANO^{1,2},

Yoshimitsu KOHAMA³, Yue WANG¹, Yuta KASHIWABARA¹, Satoshi YOSHIDA¹, Kazuki MATSUI³, Takashi SHITAOKOSHI¹, Takumi OUCHI⁴, Kyoko ISHIZAKA^{1,2}, Tsutomu NOJIMA⁴, Masashi KAWASAKI^{1,2}, Yoshihiro IWASA^{1,2}

¹The University of Tokyo, ²RIKEN Center for Emergent Matter Science (CEMS), ³Institute for Solid State Physics, University of Tokyo, ⁴Institute for Materials Research, Tohoku University

D1-12-009

17.45-18.00

Ambipolar transistor action of germanane electric double layer transistor

Yumiko KATAYAMA, Ryoto YAMAUCHI, Yuhsuke YASUTAKE, Susumu FUKATSU, Kazunori UENO

The University of Tokyo

D1-12-010

18:00-18:15

Transparency and Two-dimensional Hole Superconductivity in Li_{1-x}NbO₂

Takuto SOMA¹, Kohei YOSHIMATSU¹, Akira OHTOMO^{1,2} ¹Tokyo Institute of Technology, ²Materials Research Center for Element Strategy (MCES)

D1-12-011

18:15-18:30

Thickness-dependent Optical Bandgap and Electrical Transport Properties in Layered InSe Thin Films Grown by Pulsed-laser Deposition

Dingheng ZHENG, Junichi SHIOGAI, Kohei FUJIWARA, Atsushi TSUKAZAKI

Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan

December 13, 2019 **Oral Session 7**

Time 9:00-11:30 Room Mont-3

Chairperson Tomoki MACHIDA

Symposium breakfast meeting 2 9:00-9:30

D1-13-K01 • Keynote

9:30-10:15

Ruoff Group Carbon Research Rodney RUOFF

UNIST

D1-13-I02 Invited 10:15-10:45

10:45-11:00

11:00-11:15

Moiré phonons in the twisted bilayer graphene

Mikito KOSHINO¹, Young Woo SON² ¹Osaka University, ²Korea Institute for Advanced Study

D1-13-003

Nonreciprocal transport and anomalous photovoltaic

effect in van der Waals nanomaterials

Toshiya IDEUE¹, Yoshihiro IWASA^{1,2} ¹The University of Tokyo, ²RIKEN CEMS

D1-13-004

General theory on the electronic states in layered materials with commensurate interlayer shift

Ryosuke AKASHI The University of Tokyo

D1-13-005

11:15-11:30

Quantum and classical ratchet motions of vortices in a 2D trigonal superconductor MoS₂

Yuki ITAHASHI¹, Yu SAITO¹, Toshiya IDEUE¹, Tsutomu NOJIMA², Yoshihiro IWASA^{1,3} ¹Department of applied physics, The University of Tokyo, ²Institute for Materials Research, Tohoku University, ³RIKEN Center for Emergent Matter Science (CEMS)

December 13, 2019

Oral Session 8

Time 14:00-16:00 Room Mont-3

Chairperson Susumu OKADA

Invited

Invited

D1-13-I06

14:00-14:30

High-throughput synthesis of graphene by plasma CVD

Masataka HASEGAWA, Ryuichi KATO, Wararu MIZUTANI, Masatou ISHIHARA, Takatoshi YAMADA, Yuki OKIGAWA AIST

D1-13-I07

D1-13-008

14:30-15:00

Controlled CVD Growth of High-Quality 2D Layered Materials for Electronic and Photonic Applications

Hiroki AGO

Kyushu University

15:00-15:15

Electronic properties of graphene/C-doped h-BN heterostructures

Taishi HAGA¹, Yoshitaka FUJIMOTO¹, Susumu SAITO^{1,2,3} ¹Department of Physics, Tokyo Institute of Technology, ²Advanced Research Center for Quantum Physics and Nanoscience, Tokyo Institute of Technology, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology

D1-13-009

15:15-15:30

Direct observation of electron capture & emission processes by the time domain charge pumping measurement of MoS_2 FET

Kosuke NAGASHIO, Koki TANIGUCHI, Nan FANG The University of Tokyo

D1-13-010

Withdrawal

D1-13-011

15:30-15:45

THz optical and electrical properties, and the interlayer mechanical properties of InSe crystals grown from the liquid phase

<u>Chao TANG</u>, Yohei SATO, Katsuya WATANABE, Junya OSAKI, Tadao TANABE, Yutaka OYAMA Tohoku University

Closing 15:45-16:00

December 11, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

D1-11-P01

Trion-based High-speed Carbon Nanotube Films Electroluminescence Emitters

<u>Hidenori TAKAHASHI</u>¹, Yuji SUZUKI¹, Norito YOSHIDA¹, Kenta NAKAGAWA², Hideyuki MAKI¹ ¹Keio University, ²KISTEC

D1-11-P02

Electronic Correlation in the Two-Dimensional Electride Y_2C

<u>Masatoshi HIRAISHI</u>¹, Kenji KOJIMA^{1,2}, Ichihiro YAMAUCHI¹, Hirotaka OKABE¹, Soshi TAKESHITA¹, Akihiro KODA^{1,2}, Ryosuke KADONO^{1,2}, Xiao ZHANG³, Satoru MATSUISHI⁴, Hideo HOSONO^{3,4}, Kazuto HIRATA⁵, Shigeki OTANI⁵, Naoki OHASHI⁵

¹KEK IMSS, ²SOKENDAI, ³MSL, ⁴MCES, ⁵NIMS

D1-11-P03

Polymorphs of Transition Metal Dichalcogenide and the superconductivity modulated by the structures

Sana SASAKURA¹, Jun AKIMITSU², Kaya KOBAYASHI^{1,2} ¹Graduate school of Natural Science and Technology, Okayama University, ²RIIS, Okayama University

D1-11-P04

Electronic Structure of Periodically Modified Graphene

Tomoya ITO¹, Susumu SAITO^{1,2,3}

¹Department of Physics, Tokyo Institute of Technology, ²Advanced Research Center for Quantum Physics and Nanoscience, Tokyo Institute of Technology, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology

D1-11-P05

Growth and transport properties of monolayer MoSe₂/ WSe₂ in-plane heterostructures

Hiroshi SHIMIZU

Tokyo Metropolitan University

D1-11-P06

Optical Absorption of The Circularly-Polarized Light Irradiation in Triptycene Molecular Membrane

Masashi AKITA

Department of Nanotechnology for Sustainable Energy, School of Science and Technology Kwansei Gakuin University

D1-11-P07

Co-Intercalation of Metal Chlorides in Large-Area Bilayer Graphene

<u>Amane MOTOYAMA</u>¹, Kenji KAWAHARA², Rika MATSUMOTO³, Hiroki AGO^{1,2} ¹Kyushu University, ²Global Innovation Center, ³Tokyo Polytechnic University

D1-11-P08

Influence of Pore Density of Porous Epitaxial Graphene on Aniline Polymerization

<u>Ryuichi HIRAI</u>, Akihiro HASHIMOTO University of Fukui

D1-11-P09

Topological Pump Induced by Dynamics of Moiré Pattern Manato FUJIMOTO, Mikito KOSHINO Osaka University

D1-11-P10

Doping Magnetic Impurity Into Valley Materials by Molecular Beam Epitaxy

<u>Yuki MAJIMA¹, Yuta KASHIWABARA¹, Hideki MATSUOKA¹, Masaki NAKANO^{1,2}, Yoshihiro IWASA^{1,2}</u>

¹University of Tokyo, ²RIKEN Center for Emergent Matter Science (CEMS)

D1-11-P11

Low Temperature Liquid Phase Growth of 2D Layered Semiconductor GaSe by Flux Method and Evaluation of Nonlinear Optical Characteristics

<u>Katsuya WATANABE</u>, Yohei SATO, Chao TANG, Junya OSAKI, Tadao TANABE, Chen MINGXI, Yutaka OYAMA University of Tohoku Symposium D

D1-11-P12

Electric Double Layer Transistors of CVD-grown monolayers InSe and InS

<u>Jiang PU</u>¹, Han-Ching CHANG², Chien-Liang TU², Kuang-I LIN³, Chien-Nan HSIAO⁴, Chang-Hsiao CHEN^{2.5}, Taishi TAKENOBU¹

¹Nagoya University, ²Feng Chia University, ³National Cheng Kung University, ⁴National Applied Research Laboratory, ⁵National Sun Yat-sen University

D1-11-P13

Electronic properties in hBN-graphene-hBN trilayer systems

Hiroki OKA

Department of Physics, Osaka University

D1-11-P14

Development of an Electron Doping Method Using Specific Interaction between Amide Molecule and MoS₂

<u>Akito FUKUI¹, Yuh HIJIKATA², Jenny PIRILLO²,</u>

Takeshi YOSHIMURA¹, Atsushi ASHIDA¹,

Norifumi FUJIMURA¹, Daisuke KIRIYA^{1,2}

 $^1 \textsc{Osaka}$ Prefecture University, $^2 \textsc{Hokkaido}$ University, $^3 \textsc{JST}$ PRESTO

D1-11-P15

Misfit chalcogenide superconductors: $(BiSe)_{1+\delta}(NbSe_2)_m$

Masaharu SHIRATA¹, Jun AKIMITSU², Kaya KOBAYASHI^{1,2} ¹Department of Physics, Okayama University, ²RiiS, OKayama University

- December 11–12, 2019 — **Symposium D-2**

Novel Concepts of Electronic Materials Inspired from Complementary and Competing Fields

[Organizer]

Toshio KAMIYA (Tokyo Institute of Technology)

	— December 1	2,2019)	
Oral Session 4				
Tim	e 9:00-11:30	Room	Work-7	
Chairperson	Toshio KAMIYA			
_		-		_

.

break
9:00-9:30

D2-12-I01 ► Invited

9:30-10:00

Materials Design of Functional Semiconductors with Light Emission and Carrier Dopabilities: Ternary Perovskite Sulfides $AEHfS_3$ (AE=Sr & Ba)

Kota HANZAWA¹, Soshi IIMURA², Hidenori HIRAMATSU^{1,2}, Hideo HOSONO²

¹Laboratory for Materials and Structures, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology

D2-12-002

10:00-10:15

Light emitting diodes on glass using amorphous oxide semiconductor thin-film phosphors, rare-earth doped a-Ga-O

<u>Naoto WATANABE¹</u>, Keisuke IDE^{1,2}, Takayoshi KATASE^{1,3}, Junghwan KIM², Shigenori UEDA^{4,5}, Koji HORIBA⁶, Hiroshi KUMIGASHIRA⁶, Hidenori HIRAMATSU^{1,2}, Hideo HOSONO^{1,2}, Toshio KAMIYA^{1,2}

¹Laboratory for Materials and Structures, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³PRESTO, Japan Science and Technology Agency, ⁴National Institute for Materials Science, ⁵Synchrotron X-ray Station at SPring-8, ⁶High Energy Accelerator Research Organization

D2-12-003

10:15-10:30

Fabrication of electrochromic transistor on flexible substrate

<u>Takaki ONOZATO</u>¹, Hai Jun CHO^{1,2}, Hiromichi OHTA^{1,2} ¹Graduate School of Information Science and Technology, Hokkaido University, ²Research Institute for Electronic Science, Hokkaido University

D2-12-004

10:30-10:45

Enhanced thermoelectric power-factors by strain control in stongly correlated lanthunum titanate

<u>Takayoshi KATASE</u>, Keisuke IDE, Hidenori HIRAMATSU, Hideo HOSONO, Toshio KAMIYA Tokyo Institute of Technology

D2-12-005

Density Functional Study on Defects and Doping for Layered Ternary Nitride, SrTiN₂

<u>XINYI HE</u>¹, Zewen XIAO^{2,3}, Takayoshi KATASE^{1,4}, Keisuke IDE¹, Hideo HOSONO^{1,2}, Toshio KAMIYA^{1,2} ¹MSL, Tokyo Tech, Yokohama, Japan, ²MCES, Tokyo Tech, Yokohama, Japan, ³Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China, ⁴PRESTO, JST, Tokyo, Japan

D2-12-006

Anisotropic Expenential Optical Absorption Edge in PbS Quantum Dots on the (001), (110), and (111) Surfaces of Single Crystal Rutile-TiO₂: Comparative Study on Photoacoustic and Absorbance Spectra

 $\underline{\text{Taro TOYODA}}^1,$ Qing SHEN 1, Keita KAMIYAMA 2, Shuzi HAYASE 3

¹The University of Electro-Communications, ²bunkoukeiki Co., Ltd., ³Kyushu Institute of Technology

D2-12-007

Room-Temperature Control of Non-reciprocal Microwave Response in Multiferroic Y-type Hexaferrite

Sakyo HIROSE¹, Yoichi NII², Tsuyoshi KIMURA³, Yoshinori ONOSE²

¹Murata Manufacturing Co., Ltd., ²Institute for Materials Research, Tohoku University, ³Department of Advanced Materials Science, University of Tokyo

December 12, 2019

Oral Session 6

Time 16:30-18:30 Room Work-7

Chairperson Toshio KAMIYA

D2-12-I08 Invited

Shift current: a new perspective on ferroelectric photovoltaics

Masao NAKAMURA¹

¹RIKEN Center for Emergent Matter Science (CEMS), ²PRESTO Japan Science and Technology Agency (JST)

D2-12-I09 Invited

Novel Applications of ferroelectric and semiconducting perovskite oxide films

Norifumi FUJIMURA Osaka Prefecture Univ.

D2-12-I10 Invited

Phase stability and property control of ferroelectric $\mathrm{HfO}_{\mathrm{2}}$ films

<u>Hiroshi FUNAKUBO</u>, Takanori MIMURA, Takao SHIMIZU Tokyo Institute of Technology

10:45-11:00

11:00-11:15

11:15-11:30

16:30-17:00

17:00-17:30

17:30-18:00

D2-12-011

18:00-18:15

Dielectric properties of ReO₃-type oxyfluorides prepared by hydrothermal synthesis

Masanori KODERA¹, Ayako TAGUCHI², Takao SHIMIZU³, Hiroki MORIWAKE², Hiroshi FUNAKUBO^{1,3}

¹Material Research Center for Element Strategy, Tokyo Institute of Technoloby, ²Japan Fine Ceramics Center, ³School of Materials and Chemical Technology, Tokyo Institute of Technology

D2-12-012

18:15-18:30

Single Crystal Growth and Intrinsic Electron Mobility of Cubic SrGeO_3

<u>Christian A. NIEDERMEIER</u>¹, Yu KUMAGAI², Keisuke IDE^{1,2}, Takayoshi KATASE^{1,2}, Fumiyasu OBA^{1,2,3}, Hideo HOSONO^{1,2}, Toshio KAMIYA^{1,2}

¹Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, 226-8503, Japan, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, 226-8503, Japan, ³Center for Materials Research by Information Integration, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

December 11, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

D2-11-P01

Structural phase transition and opto-electronic properties of oxide semiconductor solid solution, $(Ba,Sr)(Sn,Ti)O_3$

<u>Yutaro KOBAYASHI</u>¹, Keisuke IDE¹, Takayoshi KATASE^{1,2}, Hidenori HIRAMATSU^{1,3}, Hideo HOSONO^{1,3}, Toshio KAMIYA^{1,3} ¹Laboratory for Materials and Structures, Tokyo Institute of Technology, ²PRESTO, Japan Science and Technology Agency, ³Materials Research Center for Element Strategy, Tokyo Institute of Technology

D2-11-P02

Investigation of Anionic Electron-Induced Magnetism in a Two Dimensional Electride Y_2C by Inelastic Neutron Scattering

Hiromu TAMATSUKURI¹, Youichi MURAKAMI¹, Hajime SAGAYAMA¹, Satoru MATSUISHI², Yasuhito WASHIO², Masato MATSUURA³, Yukinobu KAWAKITA⁴, Hideo HOSONO² ¹Institute of Materials Structure Science, High Energy Accelerator Organization (KEK), ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³Comprehensive Research Organization for Science and Society, ⁴J-PARC Center, Japan Atomic Energy Agency

D2-11-P03

Nonlinear Current-Voltage Characteristics and High Permittivity in $(In^{3+}+Ta^{5+})$ Co-Doped TiO₂ Ceramics

Prasit THONGBAI¹, Wattana TUICHAI¹,

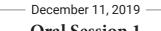
Supamas DANWITTAYAKUL², Narong CHANLEK³ ¹Khon Kaen University, ²National Metal and Materials Technology Center, ³Synchrotron Light Research Institute (Public Organization)

December 11-14, 2019 -Symposium D-3

Science and Technology of Superconductivity

Organizers

Yoshihiko TAKANO (National Institute for Materials Science) Yoshikazu MIZUGUCHI (Tokyo Metropolitan university) Naurang SAINI (Sapienza University of Rome) Hai-Hu WEN (Nanjing University)


Sponsors

Springer Japan

Sumitomo Heavy Industries, Ltd.

Oral Session 1

Time 9:00-11:40 Room Trade-1

Chairpersons K. SHIMIZU, K. MATSUMOTO

D3-11-I01

9:10-9:40

9:40-10:00

Development of MgB₂ and (Ba,K)Fe₂As₂ Wires in NIMS Hiroaki KUMAKURA¹, Zhaoshun GAO², Akiyoshi MATSUMOTO¹, Kazumasa TOGANO¹ ¹National Institute for Materials Science, ²Institute of **Electrical Engineering**

D3-11-I02 ► Invited

Invited

Recent progress of high performance iron-based superconducting wires

Yanwei MA Institute of Electrical Engineering, Chinese Academy of Sciences

D3-11-I03 ► Invited

10:00-10:20

Heteroepitaxial thin-film growth of iron-based superconductors

Hidenori HIRAMATSU, Hideo HOSONO Tokyo Institute of Technology

Saori KAWAGUCHI², Naohisa HIRAO², Yasuo OHISHI² ¹KYOKUGEN, Osaka University, ²JASRI

D3-11-I10 Invited

Data-driven Exploration for Pressure-induced
Superconductors Using Novel Diamond Anvil Cell with
Boron-doped Diamond Electrodes

Ryo MATSUMOTO^{1,2}, Hou ZHUFENG³, Sayaka YAMAMOTO^{1,2}, Shintaro ADACHI¹, Masanori NAGAO⁴, Peng SONG^{1,2}, Yoshito SAITO^{1,2}, Takafumi D. YAMAMOTO¹, Kensei TERASHIMA¹, Hiromi TANAKA⁵, Tetsuo IRIFUNE⁶, Hiroyuki TAKEYA¹, Kiyoyuki TERAKURA^{1,7}, Yoshihiko TAKANO^{1,2}

¹National Institute for Materials Science, ²University of Tsukuba, ³Chinese Academy of Sciences, ⁴University of Yamanashi, ⁵National Institute of Technology, Yonago College, ⁶Ehime University, ⁷National Institute of Advanced Industrial Science and Technology

D3-11-I11 ► Invited

15:20-15:40

15:00-15:20

Search for Superconductivity in Compressed Hydrides by First-Principles Calculations and Evolutionary Algorithms

Takahiro ISHIKAWA^{1,2}, Akitaka NAKANISHI², Katsuya SHIMIZU², Takashi MIYAKE³

¹ESICMM, National Institute for Materials Science, ²Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, ³CD-FMat, National Institute of Advanced Industrial Science and Technology

D3-11-l12 Invited

15:40-16:00

Acceleration Search method of Higher T_c

Superconductors by Machine Learning Algorithm Kaname MATSUMOTO, Tomoya HORIDE

Kyushu Institute of Technology

December 11, 2019

Oral Session 3

Time 16:30-18:30 Room Trade-1

Chairperson K. IIDA

D3-11-I13 Invited

16:30-16:50

Pressure-induced superconductivity in iron-based spinladder material BaFe₂S₃ and related materials

Hiroki TAKAHASHI Nihon University

D3-11-I14 Invited

16:50-17:10

Phenomena and physics related to superconductivity revealed by our recent high pressure studies

Liling SUN¹, Jing GUO¹, Yazhou ZHOU¹, Qi WU¹, Tao XIANG¹, Robert CAVA², Guangming ZHANG³, Ni NI⁴

¹Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, ²Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA, ³State Key Laboratory for Low dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China, ⁴Department of Physics and Astronomy, UCLA, Los Angeles, CA90095, USA

D3-11-l15	►Invited	17:10
High-temp	erature superconductivity	ı in ultrathin
iron-chalco	ogenide films studied by a	angle-resolved
photoemis	sion spectroscopy	
Kosuke N/	AKAYAMA	

Κ Tohoku University

D3-11-I16 ► Invited

17:30-17:50

17:10-17:30

EuFeAs₂ a 112-type Iron-pnictide: Novel Family of Magnetic Superconductors

Michal BABIJ, Lan Maria TRAN, Zbigniew BUKOWSKI Institute of Low Temperature and Structure Research Polish Academy of Sciences

D3-11-I17 ►Invited

17:50-18:10

A Review on a Functional Mixed Anion Layered Compound, Sr₂TMFeAsO_{3-d} (TM: Transition Metals) Yoichi KAMIHARA Keio University

D3-11-l18 ► Invited

18:10-18:30

Superconductivity in a New Iron Arsenide LaFe₂As₂

Akira IYO¹, Shigeyuki ISHIDA¹, Hiroshi FUJIHISA¹, Yoshito GOTOH¹, Izumi HASE¹, Yoshiyuki YOSHIDA¹, Hiroshi EISAKI¹, Kenji KAWASHIMA^{1,2} ¹National Institute of Advanced Industrial Science and Technology (AIST), ²IMRA Material R&D Co., Ltd.

December 11, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

D3-11-P01

Superconductivity in Bi-based layered superconductors Yoshikazu MIZUGUCHI

Tokyo Metropolitan University

D3-11-P02

Two-Fold-Symmetric Magnetization in Single Crystals of

Tetragonal BiCh₂-based Superconductor LaO_{0.5}F_{0.5}BiSSe Kazuhisa HOSHI¹, Motoi KIMATA², Tatsuma D MATSUDA¹, Yosuke GOTO¹, Toshikazu MIZUGUCHI¹

¹Tokvo Metropolitan University, ²Institute for Materials Research, Tohoku University

D3-11-P03

Crystal Size Improvement of Bi₂Sr₂CaCu₂O_{8+x} Superconducting Whiskers Using Stress-controlled Precursors

Sayaka YAMAMOTO^{1,2,3}, Ryo MATSUMOTO^{1,2}, Shintaro ADACHI², Yoshihiko TAKANO^{1,2}, Hiromi TANAKA³ ¹University of Tsukuba, ²National Institute for Materials Science, ³National Institute of Technology, Yonago College

D3-11-P04

Chemical substitution effect in a possible topological superconductor

Takeshi TAKAHASHI¹, Harald O. JESCHKE², Jun AKIMITSU², Kaya KOBAYASI^{1,2} ¹Department of Physics, Okayama University, ²RIIS, Okayama University

D3-11-P05

Intra- and inter-granular superconducting properties and microstructure of BaFe₂As₂ polycrystalline bulks prepared by high energy milling

<u>Shinnosuke TOKUTA</u>¹, Akiyasu YAMAMOTO¹, Yusuke SHIMADA², Satoshi HATA³ ¹Tokyo University of Agriculture and Technology, ²Tohoku

¹ Tokyo University of Agriculture and Technology, ² Tohoku University, ³Kyushu University

D3-11-P06

Theoretical study of the uniaxial compression and tension effects on the superconductivity in two-leg ladder-type cuprates

<u>Hikaru SAKAMOTO</u>, Kazuhiko KUROKI University of Osaka

D3-11-P07

Vortex matter and dynamics in YBCO thin films with complex artificial pinning studied by DC magnetization, magnetic relaxation and AC susceptibility measurements

<u>Adrian CRISAN</u>, Ion IVAN, Lucica MIU National Institute for Materials Physics

D3-11-P08

Superconducting Thin Films of $Bi_2Sr_2CaCu_2O_{8+\delta}$ for Future THz Planar Devices

<u>Kazuhiro ENDO</u>¹, Shunichi ARISAWA², Petre BADICA³ ¹Kanazawa Institute of Technology, ²National Institute for Materials Science, ³National Institute of Materials Physics

D3-11-P09

Unconventional Superconductivity Properties of Re Doped Weyl Semimetal $MoTe_2$

<u>Ravi Prakash SINGH</u>, Manasi MANDAL, Saurav MARIK Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India

D3-11-P10

Epitaxial Stabilization and Electrochemical Doping Make Metastable Titanates New Superconducting Materials

Akira OHTOMO^{1,2}, Kohei YOSHIMATSU¹

¹Department of Chemical Science and Engineering, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology

D3-11-P11

The First Discovery of superconductivity in Yb-based compounds $YbTr_2AI_{20}$ (*Tr* = Mo, Ta)

<u>Naoki NAKAMURA</u>¹, Ryuji HIGASHINAKA¹, Yuji AOKI¹, Hideyuki SATO¹, Dai AOKI², Tatsuma D. MATSUDA¹ ¹Tokyo Metropolitan University, ²Tohoku University

D3-11-P12

Growth and superconducting transition temperature of $(La,Ce)OBiS_2$ single crystals

Yuji HANADA¹, Masanori NAGAO¹, Akira MIURA², Yuki MARUYAMA¹, Satoshi WATAUCHI¹, Yoshihiko TAKANO³, Isao TANAKA¹

¹University of Yamanashi, ²Hokkaido University, ³National Institute for Materials Science

D3-11-P13

Superconducting properties of RE123 superconductor with high-entropy-alloy-type RE site

<u>Yuta SHUKUNAMI</u> Tokyo Metropolitan University

D3-11-P14

New Types Of Iron-Oxypnictide Heterostructures And Their Interfaces

Silvia HAINDL¹, Masato SASASE², Hidenori HIRAMATSU², Hideo HOSONO^{2,3}, Erik KAMPERT⁴, Ian MACLAREN⁵ ¹World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, ²Materials Research Center for Element Strategy, Tokyo Institute of Technology, ³Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, ⁴Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, ⁵School of Physics and Astronomy, University of Glasgow

D3-11-P15

Hydrogen annealing effect of superconducting properties in $\text{FeSe}_{1-x}\text{Te}_x$

Daiki YAMANE¹, Kazumasa HORIGANE², Jun AKIMITSU² ¹Graduate School of natural science and technology, Okayama University, ²Research Institute for Interdisciplinary Science, Okayama University

D3-11-P16

Superconducting Critical Current Density Enhanced to 285 A cm⁻² for Sr₂VFeAsO₃₋₆ Tape Fabricated via ex-situ Powder-in-tube Process

<u>Suguru IWASAKI</u>¹, Ryo MATSUMOTO², Shintaro ADACHI², Yoshihiko TAKANO², Yoichi KAMIHARA¹ ¹Keio, ²NIMS

D3-11-P17

Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductors $R_5Rh_6Sn_{18}$ (R = Lu, Sc, Y)

Devashibhai Thakarshibhai ADROJA Rutherford Appleton Laboratory

D3-11-P18

Synthesis of the Mother Phase of the Iron-Based Superconductor SmFeAsO at Low Temperatures

<u>Ryosuke SAKAGAMI¹</u>, Simon R. HALL², Jason POTTICARY², Masanori MATOBA¹, Yoichi KAMIHARA¹ ¹Keio University, ²University of Bristol Symposium D

D3-11-P19

Crystal structure and superconducting properties of Sr_{1-x}RE_xFBiS₂ (RE: La,Ce,Pr,Nd,Sm) BiS₂-based layered superconductors

Aichi YAMASHITA, Yoshikazu MIZUGUCHI Tokyo Metropolitan University

D3-11-P20

Superconductivity at 4 K for Eu doped La2-xEuxO2Bi3Ag06 $Sn_{0.4}S_6$ **RAJVEER JHA** Tokyo Metropolitan University

D3-11-P21

Control of the physical property by the field effect diamond anvil cell

Yoshihiko TAKANO^{1,2}, Shintaro ADACHI¹ ¹National Institute for Materials Science (NIMS), ²Tsukuba Univ

D3-11-P22

Superconducting Joints between Bi2223 and NbTi Wires using Bi-Pb-Sn Solder

Yoshihiko TAKANO^{1,2}, Kazuo INOUE¹

¹National Institute for Materials Science (NIMS), ²Tsukuba Univ.

December 12, 2019

Oral Session 4

Time 9:00-12:10 Room Work-1

Chairpersons K. TANIGAKI, T. YOKOYA

D3-12-I01

Invited

9:00-9:30

Neutron Irradiation: from Single Displaced Atoms to Nanometer Sized Defects and their Influence on Superconductivity in Various Materials

Michael EISTERER¹, David X. FISCHER¹, Daniel KAGERBAUER¹, Raphael UNTERRAINER¹, Thomas BAUMGARTNER¹, Stephan PFEIFFER², Johannes BERNARDI² ¹TU Wien, Atominstitut, ²TU Wien, USTEM

D3-12-I02 Invited

9:30-9:50

9.50 - 10.10

Vortex dynamics of REBCO films irradiated with lowenergy ion irradiations

Toshinori OZAKI Kwansei Gakuin University

D3-12-I03 ► Invited

Effect of ion irradiation on cuprate and iron-based superconductors

Qiang LI

Brookhaven National Laboratory

D3-12-I04 Invited

10:10-10:30

Extraordinary pinning efficiency of one-dimensional artificial pinning centers with coherent interfaces in YBa2Cu3O7-x nanocomposite films

Judy WU University of Kansas

D3-12-105

Coffee break 10:30-10:50

Invited

10:50-11:10

Designed nano-structures in high performance oxide superconducting films controlled by novel PLD growthtechniques

Yutaka YOSHIDA¹, Yusuke ICHINO¹, Yuji TSUCHIYA¹, Tomohiro ITO¹, Kaname MATSUMOTO², Ataru ICHINOSE³, Satoshi AWAJI⁴ ¹Nagoya University, ²Kyushu Inst. Tech., ³Central Research Institute of Electric Power Industry, ⁴Tohoku University

D3-12-I06 ► Invited

11:10-11:30

Possibility of Unconventional High-T_c Superconductivity Originating from Coexisting Wide and Narrow Bands Kazuhiko KUROKI

Osaka University

D3-12-I07 Invited 11:30-11:50

Electronic compressibility and high-Tc superconductivity: new links

Luca DE MEDICI ESPCI

D3-12-I08 ►Invited 11:50-12:10

High-T_c cuprates – story of two electronic subsystems Neven BARISIC^{1,2}

¹TU Wien, ²PMF Zagreb

- December 12, 2019 -

Cluster Session D

Time 14:00-16:00 Room Ken-1

Chairpersons Yoshihiro Iwasa, Kenji Shiojima, Susumu Saito

DX-12-CLK01

14:00-14:40

Atomic-level control of high temperature superconductor materials for unveiling their pairing mechanism Qi-kun XUE

Tsinghua University, China

DX-12-CLK02

14.40 - 15.20

Development of Corundum-Structured Gallium Oxide Power Devices by MIST EPITAXY® Takashi SHINOHE FLOSFIA INC., Japan.

Symposi

DX-12-CLK03

15:20-16:00

Emergent electromagnetism in quantum materials Naoto NAGAOSA

RIKEN and U. Tokyo, Japan

December 12, 2019	
Oral Session 6	
Time 16:30-18:30 Room Work-1	
Chairperson K. KUROKI	
Symposium special talk What value can ebook bring in?	
~Case in materials science~	

Akiyuki Tokuno

Editor, Books, Science, Springer

16:30-16:50

D3-12-I09 Invited

16:50-17:10

High-resolution photoelectron holography of heavily boron-doped diamond

<u>Takayoshi YOKOYA</u>¹, Wataru HOSODA¹, Takumi TANIGUCHI¹, Kensei TERASHIMA¹, Hirokazu FUJIWARA¹, Yuko YANO¹, Tomohiro MATSUSHITA², Takayuki MURO², Toyohiko KINOSHITA², Yoshihiko TAKANO³,

Taisuke KAGEURA⁴, Hiroshi KAWARADA⁴, Tamio OGUCHI⁵, Yuji MURAOKA¹

¹Okayama University, ²Japan Synchrotron Radiation Research Institute, ³National Institute for Materials Science, ⁴Waseda University, ⁵Osaka University

D3-12-I10 ► Invited

17:10-17:30

Fundamental Properties and Device Applications of Superconducting Single-crystalline Boron-doped Diamond Taisuke KAGEURA¹², Yoshihiko TAKANO²,

Hiroshi KAWARADA^{2,3}

¹National Institute for Materials Science, ²Waseda University, ³The Kagami Memorial Laboratory for Materials Science and Technology Waseda University

D3-12-I11 Invited

17:30-17:50

High Pressure Polymerization of Metal Doped C_{60} ~In an Attempt to Prepare Carbon Clathrate High T_c Superconductor~

Masashi TANAKA Kyushu Institute of Technology

D3-12-I12 ► Invited

17:50-18:10

Electron-Phonon and Electron-Electron Interactions in Electron Doped Aromatic Carbon Materials viewed from Electrical Transport

<u>Katsumi TANIGAKI</u>, Yuki MATSUDA Tohoku University

D3-12-I13 ► Invited

18:10-18:30

Enhanced Superconductivity in Polar IV – VI Semiconductors

Markus KRIENER¹, M. KAMITANI¹, T. KORETSUNE^{1,2}, S. M. BAHRAMY^{1,3}, M. SAKANO³, R. YUKAWA⁴, K. HORIBA⁴, H. KUMIGASHIRA⁴, K. ISHIZAKA^{1,3}, R. ARITA^{1,3}, Y. TOKURA^{1,3}, Y. TAGUCHI¹

¹RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan, ²Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan, ³Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

– December 13, 2019 -

Oral Session 7 (1)

Time 9:00-12:10 Room Work-1

Chairpersons H. KUMAKURA, M. EISTERER

D3-13(1)-I01 ►Inv

► Invited

Emerging materials for high field applications: activities

at CNR-SPIN. <u>Carlo FERDEGHINI</u>¹, Emilio BELLINGERI¹, Cristina BERNINI¹, Valeria BRACCINI¹, Alessandro LEVERATTO¹, Andrea MALAGOLI¹, Pietro MANFRINETTI¹², Ilaria PALLECCHI¹, Alessia PROVINO¹, Marina PUTTI¹², Aisha SABA^{1,2}, Giulia SYLVA^{1,2}, Andrea TRAVERSO^{1,2} ¹CNR-SPIN, Genova, Italy, ²University of Genova, Italy

D3-13(1)-I02 Invited

9:30-9:50

9.00-9.30

Magnetic Properties in Superconducting Metals and Alloys Processed by High-Pressure Torsion

<u>Terukazu NISHIZAKI</u>¹, Kaveh EDALATI^{2,3}, Seungwon LEE⁴, Zenji HORITA^{2,3}, Tadahiro AKUNE¹, Tsutomu NOJIMA⁵, Satoshi IGUCHI⁵, Takahiko SASAKI⁵

¹Department of Electrical Engineering, Kyushu Sangyo University, ²WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, ³Department of Materials Science and Engineering, Kyushu University, ⁴Department of Materials Design and Engineering, University of Toyama, ⁵Institute for Materials Research, Tohoku University

D3-13(1)-I03 Invited

9:50-10:10

Recent Progress in Nb₃Sn High Field Performance

<u>Chiara TARANTINI</u>, Shreyas BALACHANDRAN, Peter L. LEE, Fumitake KAMETANI, Yi-Feng SU, Benjamin WALKER, William L. STARCH, David C. LARBALESTIER Applied Superconductivity Center, National High Magnetic

Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University

D3-13(1)-I04 Invited

10:10-10:30

Development of MgB₂-based Materials Towards Different Superconducting Applications

<u>Petre BADICA</u> National Institute of Materials Physics Symposium D

Coffee break 10:30-10:50 D3-13(1)-I05 Invited 10:50-11:10 Monolithic terahertz emitter of high-temperature superconductors Itsuhiro KAKEYA¹, Asem ELARABI¹, Keiichiro MAEDA¹, Shuma FUJITA¹, Manabu TSUJIMOTO² ¹Kvoto University, ²University of Tsukuba D3-13(1)-I06 ► Invited 11:10-11:30 Development of High-T_cSuperconducting THz Emitters Takanari KASHIWAGI^{1,2}, Shungo NAKAGAWA¹, Takayuki IMAI¹, Genki KUWANO¹, Youta KANEKO¹, Yukino ONO¹, Shinji KUSUNOSE¹, Takashi YAMAMOTO³, Hidetoshi MINAMI^{1,2}, Manabu TSUJIMOTO^{1,2}, Kazuo KADOWAKI⁴ ¹Graduate School of Pure & Applied Sciences, University of Tsukuba, ²Division of Materials Science, Faculty of Pure & Applied Sciences, University of Tsukuba, ³QuTech, Delft University of Technology, ⁴Algae Biomass and Energy System R&D Center, University of Tsukuba D3-13(1)-I07 ► Invited 11:30-11:50 Elemental Substitution in the RE-123 and Bi-2212 Cuprate Superconductors for the Enhancement of T_{c} Masatsune KATO, Kohei NAKAGAWA, Takayuki KAWAMATA, Takashi NOJI, Yoji KOIKE Tohoku University D3-13(1)-I08 ► Invited 11:50-12:10 Bond vs. Diagonal Nematicity in the Pseudogap Phase of High-Temperature Cuprate Superconductors Shigeru KASAHARA Kyoto University - December 13, 2019 -Oral Session 7 (2) Time 9:00-12:10 Room Work-6 Chairpersons R. ARITA D3-13(2)-I01 Invited 10:50-11:10 Polymorphism and Superconductivity in Platinum Pnictides Minoru NOHARA Okayama University D3-13(2)-I02 ► Invited 11:10-11:30 Pressure-induced superconductivity in non-symmorphic CrAs Hisashi KOTEGAWA Kobe University

D3-13(2)-I03 Invited 11:30-11:50 Unconventional Superconductivity in Noncentrosymmetric Superconductors Ravi Prakash SINGH **IISER Bhopal** D3-13(2)-I04 Invited 11:50-12:10 Possible valence skipping superconductivity in doped Dirac metal Kaya KOBAYASHI^{1,2}, T. UENO¹, T. WAKITA², T. FURUKAWA³, T. ITOU³, T. YOKOYA^{1,2}, J. AKIMITSU² ¹Department of Physics, Okayama University, ²RIIS, Okayama University, ³Department of Applied Physics, Tokyo University of Science December 13, 2019 -Oral Session 8 (1) Time 14:00-16:00 Room Work-1 Chairperson C. FERDEGHINI D3-13(1)-l09 Invited 14:00-14:20 Novel Electronic Nematicity in Heavily Hole-Doped Iron-Pnictide Superconducotrs Takasada SHIBAUCHI University of Tokyo D3-13(1)-I10 Invited 14:20-14:40 The Interplay of Superconductivity and Magnetism in Iron Based Superconductors: Study of EuFe₂As₂-based Magnetic-Superconductors Lan Maria TRAN, Michał BABIJ, Zbigniew BUKOWSKI, Andrzej J. ZALESKI Institute of Low Temperature and Structure Research Polish Academy of Sciences in Wrocław D3-13(1)-I11 ► Invited 14:40-15:00 Superconducting properties of 1144-type iron pnictide superconductors Hiraku OGINO¹, Shigeyuki ISHIDA¹, Akira IYO¹, Hiroshi EISAKI¹, Kenji KAWASHIMA^{1,2} ¹National Institute of Advanced Industrial Science and Technology (AIST), ²IMRA Material R&D Co., Ltd. D3-13(1)-I12 ► Invited 15:00-15:20 Ouasi-particle self-consistent GW calculations and superconductivity in iron-based Superconductors

<u>Katsuhiro SUZUKI</u>¹, Taishi OGURA², Hirofumi SAKAKIBARA³⁴, Takao KOTANI³, Hiroaki IKEDA² ¹Research Organization of Science and Technology,

 ^aResearch Organization of Science and Technology, Ritsumeikan University, ²Department of Physics, Ritsumeikan University, ³Department of Applied Mathematics and Physics, Tottori University,
 ⁴Computational Condensed Matter Physics Laboratory

D3-13(1)-I13 Invited

15:20-15:40

Magnetism in Fe pnictides and chalcogenides Rudi HACKL

Walther Meissner Institut, Bayerische Akademie der Wissenschaften

- 160 -

Cumnori

D3-13(1)-I14	►Invited	15:40-16:00		— December 13, 2	2019 ———
	f Multigap Supercond	uctivity in		Oral Session	9 (1)
	F₂ (A = K, Rb and Cs) i Thakarshibhai ADROJ,	٨	Tim	ne 16:30-18:30 Ro	oom Work-1
	Appleton Laboratory	<u>-</u>	Chairperson	I. KAKEYA	
	— December 13, 2	n19		N loss data al	16.00 16.56
	Oral Session		D3-13(1)-I15	Invited evaluation of multi ra	16:30-16:50
Tin		om Work-6	substituted I	$ROBiS_2$ (<i>R</i> : rare earth	
Chairperson	K. KOBAYASHI		Masanori N	cting single crystals	Akira MIURA ² ,
D3-13(2)-I05	Invited	14:00-14:20	Yoshihiko T	(AMA ¹ , Satoshi WATAL AKANO ³ , Isao TANAKA	A ¹
	ana Mode in Topologi	cal Superconducting		of Yamanashi, ² Hokkaio Materials Science	do University, ³ National
Ryotaro ARI	<u>ITA</u> ^{1,2}		D3-13(1)-I16	► Invited	16:50-17:10
¹ University of Science	of Tokyo, ² RIKEN Center	for Emergent Matter	substitution		ia two-site /ered oxychalcogenide
D3-13(2)-I06	► Invited	14:20-14:40		, Sn₀.₄S₅.7Se₀. ₃ HA, Yosuke GOTO, Yos	
	modes in topological			<u>HA</u> , YOSUKE GOTO, YOS opolitan University	INKAZU MIZUGUCHI
-	al observations and pro	oposed models			
Tomasz DIE		Гор, Institute of Physics,	D3-13(1)-I17	▶ Invited	17:10-17:30
	lemy of Sciences	rop, institute of Physics,	in the bismut	h chalcogenide super	by Bi dimer disconnection conductor CsBi _{4-x} Pb _x Te
D3-13(2)-I07 Observation	►Invited and control of nemation	14:40-15:00 c topological	David BILLIN		ITA ² , Yoshihiko TAKANO
	ctivity in doped Bi ₂ Se ₃		-	KA ² , Takayoshi YOKON Ivanced Radiation Rese	earch Institute, National
Shingo YON			Institutes for	Quantum and Radiolog	gical Science and
Kyoto Unive	ersity				Interdisciplinary Science al Institute for Materials
D3-13(2)-I08	► Invited	15:00-15:20			ronomy, Cardiff University
NMR studies	s of Topological Super	conductors	D3-13(1)-I18	▶ Invited	17:30-17:50
Kazuaki MA			. ,		Spectroscopy Study in
Okayama U	niversity		BiCh ₂ superc		Speciroscopy Study in
D3-13(2)-I09	►Invited	15:20-15:40	Satoshi DEN	<u>IURA</u> ¹ , Shotaro SHOBL	J ² , Kazuki MIYATA ² ,
	ro-energy vortex boun				
•	cting topological surfa	ice state of Fe(Se, Ie)	Institute of 7		
<u>Tadashi MA</u> RIKEN			D3-13(1)-I19	▶ Invited	17:50-18:10
DD 10/0) 110) Invited	15.40 16.00		mical pressure effec	
D3-13(2)-l10	► Invited	15:40-16:00	•	structure in LaOBiCh	
	ctivity and Possible El tanium Pnictide Oxide			$ASHIMA^{1}$, Yuko YANO ²	, Eugenio PARIS ³ , JCHI ⁴ , Yoichi KAMIHARA ⁵
Kenji ISHID	<u>JIMA</u> ¹ , Wataru ISHII ¹ , Sh A ² , Kota KATAOKA ¹ , Kar		Takanori WA Takayoshi Y	AKITA ⁶ , Yuji MURAOKA OKOYA ⁶	⁶ , Naurang L. SAINI ³ ,
Zenji HIROI ¹ ¹ University o	of Tokyo, ² Kyoto Univers	ity	of Natural S Physics, Uni of Physics, 7	ciences, Okayama Uni [,] versity of Rome "La Sa Fokyo Metropolitan Un	eience, ² Graduate School versity, ³ Department of apienza", ⁴ Department iversity, ⁵ Department of matics, Keio University,

⁶Research Institute for Interdisciplinary Science, Okayama

Symposium special talk 18:10-18:30

University

- 161 -

[— December 13, 20	19	
	Oral Session 9		
Tim		m Work-6	
Chairperson	H. KOTEGAWA		Chairper
D3-13(2)-l11	► Invited	16:30-16:50	D3-14-I01
Phenomena i Dai AOKI	Superconductivity and in Uranium Compound		Science : Connecti Jun-ichi
IMR, Tohoku	University		Takayos Takeshi
D3-13(2)-I12 NMR Studies	 Invited on U-based Ferromag 	16:50-17:10	¹ Aoyama ³ Sumito
Superconduc	otors		D3-14-I02
<u>Kenji ISHIDA</u> Kyoto Univer			Overview supercor
D3-13(2)-I13	► Invited	17:10-17:30	prospect
	of Spin-Triplet Superc pect of Spin-Orbit Inte r	-	<u>Noriko (</u> Satarou Center c Energy F
Department	of Physics, Kobe Univer	sity	D3-14-I03
Surface Prop Systems Tatsuma D. I		-	Grain Bo Bi-2212 a <u>Fumitak</u> Chongin Ulf TRO David LA
Tokyo Metro	politan University		Florida S
D3-13(2)-I15	► Invited	17:50-18:10	D3-14-I04
High Pressur Insulator YbE <u>Fumitoshi IG</u> Takahiro YAI Yasuhiro H. I Koichi KINDO Tetsuo IRIFU Tomoko KAO ¹ Institute of S	ign of Light Rare-Earth e Synthesis and Novel 312 <u>A</u> ¹ , Wataru MATSUHRA ¹ MADA ¹ , Hyohma TAKEM MATSUDA ² , Yoshimitsu D ² , Toru SHIMMEI ³ , Take JNE ³ , Norimasa NISHIYA GAYAMA ⁶ , Katsuya SHIN Quantum Beam Science Solid State Physics, Univ cs Research Center, Ehir	Feature of Kondo , Hiroyuki NAKAYAMA ¹ , IORI ¹ , Akira MATSUO ² , KOHAMA ² , shiro KUNIMOTO ³ , MA ⁴ , Hitoshi SATO ⁵ , MIZU ⁶ , Ibaraki University, yersity of Tokyo,	Exploring Nitrides I Akira MI Nataly C Isao TAI ¹ Hokkaid
⁴ Laboratory 1	for Materials and Structo	ures, Tokyo İnstitute	D3-14-I05
Hiroshima U	gy, ⁵Hiroshima Synchrotı niversity, ⁰Center for Sci ne Conditions, Osaka Ur	ence and Technology	Solid sta proton-d Masava

D3-13(2)-I16 Invited

18:10-18:30

Multipole ordering in a Pr-based quaternary compound PrRu₂Sn₂Zn₁₈

Kazuhei WAKIYA¹, Takahiro KOMAGATA¹, Yuki SUGIYAMA¹, Masatomo UEHARA¹, Jun GOUCHI², Kazuyuki MATSUBAYASHI³, Yoshiya UWATOKO², Izuru UMEHARA¹

¹Yokohama National University, ²The University of Tokyo,

³The University of Electro-Communications

December 14, 2019

Oral Session 10

Time 9:00-12:20 Room Work-1

nairpersons Y. TAKANO, Y. MIZUGUCHI

14-101 Invited

9:00-9:30

ence and Technology on Recent Bi2223 Joints nnecting DI-BSCCO

in-ichi SHIMOYAMA¹, Yasuaki TAKEDA², Takanori MOTOKI¹, kayoshi NAKASHIMA³, Shin-ichi KOBAYASHI³, keshi KATO³

oyama Gakuin University, ²The University of Tokyo, umitomo Electric Industries

14-102 Invited

9:30-9:50

erview of the performance test of 1km-long high-Tc erconducting DC cable system in Ishikari and future spects

oriko CHIKUMOTO, Hirofumi WATANABE, Yury IVANOV, atarou YAMAGUCHI enter of Applied Superconductivity and Sustainable ergy Research, Chubu University

14-103 Invited

9:50-10:10

in Boundary structures and Intergrain Connectivity in 212 and Ba-122 High Temperature Superconductors

mitake KAMETANI, Yavuz OZ, Abiola OLOYE, ongin PAK, Shah LIMON, Yi-Feng SU, Jianyi JIANG, f TROCIEWITZ, Chiara TARANTINI, Eric HELLSTROM, vid LARBALESTIER orida State University

14-104 Invited 10:10-10:30

loring Ternary Molybdenum Superconducting ides by Self-Combustion Synthesis

kira MIURA¹, Jin ODAHARA¹, ataly Carolina ROSERO-NAVARRO¹, Masanori NAGAO², ao TANAKA², Kiyoharu TADANAGA¹ okkaido University, ²University of Yamanashi

Invited

Coffee break 10:30-10:50

10:50-11:10

id state electrochemistry for intercalation by using ton-driven ion introduction

asaya FUJIOKA¹, Kento SATO¹, Masanori NAGAO², Satoshi DEMURA³, Hideaki SAKATA⁴, Shintaro ADACHI⁵, Yoshihiko TAKANO⁵, Hideo KAIJU⁶, Melbert JEEM¹, Junji NISHII¹

¹Hokkaido University, ²University of Yamanashi, ³Nihon University, ⁴Tokyo University of Science, ⁵National Institute for Materials Science, ⁶Keio University

 D3-14-106
 ► Invited
 11:10-11:30

 Layered Tin Princtides as a New Class of van der Waalstype Superconductors
 Value GUTO

 Yosuke GUTO
 Tokyo Metropolitan University

D3-14-I07 Invited

11:30-11:50

Exploring novel superconductors in low-dimensional materials

Zhi An REN Institute of Physics, Chinese Academy of Sciences

D3-14-I08 Invited

11:50-12:10

Carrier-doping to Iridate Sr₂IrO₄ Jun AKIMITSU Okayama University

Closing 12:10-12:20

De	cember 11–12, 20		December 11, 2	
Sv	mposium E) -4	Oral Sessio	n 2
•	_		Time 14:00-16:00 Ro	om Trade-3
A.º. I I I	5th E&J BLS		Chairpersons Patrick CHIN, Kenji S	HIOJIMA
Wide-bandg	ap and 2-dimensior	nal Materials		
	Organizers		D4-11-105 ► Invited	14:00-14:30
Kenii	SHIOJIMA (University of	Fukui)	The Hunt for Mobile Holes Induce Huili Grace XING	d by Polarization in Gai
Fumim	asa HORIKIRI (SCIOCS C	Co. Ltd.)	Cornell University	
	KAWARADA (Waseda U: IASHIMOTO (University			14.00 15.00
	N (Intelligent Epitaxy Tecl		D4-11-I06 ►Invited	14:30-15:00
Matte	o MENEGHINI (Padova	Univ.)	Challenge and Opportunity for Ma LED by MOVPE on High Tempera	
	December 11, 2019		Template	
	Oral Session 1		Koh MATSUMOTO ¹ , Yuji TOMITA ¹ , Yuya YAMAOKA ¹ , Shuuichi KOSEK	
Time	9:00-11:30 Room	Trade-3	Hideto MIYAKE ² , Hideki HIRAYAM	
	enji SHIOJIMA		¹ TAIYO NIPPON SANSO, ² Mie Univ	ersity, ³ RIKEN
			D4-11-I07 ►Invited	15:00-15:30
C			Breakdown Phenomena in High-	and Low-Voltage SiC
	Blank		Devices	
	9:00-9:30		Tsunenobu KIMOTO	
			Kyoto University	
	vited	9:30-10:00	D4-11-I08 ►Invited	15:30-16:00
-	ynamic Performance c or Power Applications	of Gallium Nitride-	Carrier Recombination Velocity ir and Defects	4H-SiC: at Surfaces
	Matteo MENEGHINI,		Masashi KATO	
lessandro BAF	BATO, Matteo BORGA, E		Nagoya Institute of Technology	
)CCHETTA, Elena FABRI Kalparupa MUKHERJEE			
laria RUZZARI	N, Mehdi RZIN, Alaleh TA	AJALLI,	December 11, 2	
	IEGHESSO, Enrico ZANO	NI	Oral Sessio	n 3
Iniversity of Pa	uova		Time 16:30-18:30 Ro	om Trade-3
	vited	10:00-10:30	Chairperson Matteo MENEGHINI	
tra-wide Band odes and Trar	gap Al-rich AlGaN Alloy	ys for Power		
	IAN, Mary H. CRAWFOR	D,	D4-11-I09 ►Invited	16:30-17:00
ndrew M. ARN	ISTRONG, Greg W. PICK	RELL,	Vertical GaN p-n Junction Diodes	Fabricated on Free-
	ERSON, Robert J. KAPLA ER, Michael L. SMITH, V		standing GaN Substrates	
Sandia National		INCENTIVI. ADATE	<u>Tomoyoshi MISHIMA</u> Hosei University	
		10.00 11.00	-	
	vited e structures and epi pro	10:30-11:00	D4-11-I10 ►Invited	17:00-17:30
	I/GaN HEMTs	opertieson nigh	GaN-based normally-off HEMTs f applications	or switching and logic
azutaka TAKA	<u>GI</u> , Kenichi SUGITA, Kuni	o TSUDA,	Jan KUZMIK	
Hideki KIMURA		0	Institute of Electrical Eng., Slovak A	Academy of Sci.
chiba Infracti	ucture Systems & Soluti	ons Corporation		
1511104 1111450		11.00 11.00		
	vited	11:00-11:30		
-11-l04 ►In mpositional r	netrology of Atom Prol			
-11-l04 ► In mpositional r plied to III-N o	netrology of Atom Proloptoelectronic devices			
11-I04 ► In mpositional r plied to III-N o prenzo RIGUT	netrology of Atom Proloptoelectronic devices	be Tomography		

D4-11-I11 Invited

Ab-initio based description and design of nitride surfaces: The role of surface rehybridization on alloy composition and ordering.

Liverios LYMPERAKIS, Christoph FREYSOLDT, Jörg NEUGEBAUER Computational Materials Design departement, Max-Planck-

Insitut für Eisenforschung

D4-11-I12 ► Invited

18:00-18:30

Epitaxial Growth of N-Polar Nitride Semiconductor and its Device Application

Takashi MATSUOKA

New Industry Creation Hatchery Center, Tohoku University

	— December	12, 2019 ——	
Oral Session 4			
l I	ime 9:00-11:30	Room Miel-5	
Chairperso	on Fumimasa HORI	KIRI	
	Blar	nk	
	9:00-1	0:00	
D4-12-I01	► Invited		10:00-10:30
	mical application	on boron-doped	diamond
electrodes			
<u>Yasuaki E</u> Keio Unive			
Kelo Ullive	ersity		
D4-12-I02	► Invited		10:30-11:00
Electrical p	properties of GaN	MOS capacitors	with ALD-
	e insulators		
	<u>NABATAME</u> ¹ , Yosh ZAKI ² , Yasuo KOIDE		
	Institute for Materia		ute of
	and Systems for Su		
D4-12-003			11:00-11:15
Difference	in carrier lifetimes	s for SiC measur	ed by
microwave	e photoconductivit	y decay and tim	e-resolved
photolumi	nescence method	S	
<u>Masashi k</u>			
Nagoya In	stitute of Technolo	ду	
D4-12-004			11:15-11:30

Simple Photoelectrochemical Etching of GaN for RF Application

<u>Fumimasa HORIKIRI</u>¹, Noboru FUKUHARA¹, Yoshinobu NARITA¹, Takehiro YOSHIDA¹, Masachika TOGUCHI², Kazuki MIWA², Taketomo SATO² ¹SCIOCS Company Limited, ²Hokkaido University

_	Oral Sessi	
Τ	ime 16:30–18:30 F	Room Work-6
Chairperso	n Akihiro HASHIMOT	0
D4-12-105	►Invited	16:30-17:00
		3 crystals by TEM and
related tec Osamu UE Makoto KA	<u>EDA</u> ¹ , Akito KURAMATA	² , Hirotaka YAMAGUCHI ³ ,
¹ Meiji Univ	rersity, ² Novel Crystal T f Advanced Industrial S	echnology Inc., ³ National Science and Technology,
D4-12-I06	▶ Invited	17:00-17:30
Plasma CV	′D YAZAKI, Akio OHTA	es Formed by Remote
D4-12-107	▶ Invited	17:30-18:00
graphene <u>Satoru TA</u> Takashi KA Toshio MI Fumio KOI	AJIWARA ¹ , Anton VISIK YAMACHI ² , Kan NAKAT	RA¹, Ryo-suke UOTANI¹, OVSKIY¹, Takushi IIMORI² ISUJI³, Kazuhiko MASE⁴,
D4-12-008		18:00-18:15
	od for First-principles	Electronic-structure
Study of Im Diamond a <u>Hiroki YAN</u> Susumu S ¹ Departme ² Advanced Nanoscier	npurity Induced States nd Cubic BN <u>MASHITA¹</u> , Taishi HAGA AITO ^{1,2,3} ent of Physics, Tokyo In I Research Center for C nce, Tokyo Institute of T Center for Element Stra	uantum Physics and
Study of Im Diamond a <u>Hiroki YAN</u> Susumu S ¹ Departme ² Advanced Nanoscier Research Technolog	Apprity Induced States nd Cubic BN <u>MASHITA¹</u> , Taishi HAGA AITO ^{1,2,3} ent of Physics, Tokyo Ir d Research Center for C ice, Tokyo Institute of T Center for Element Stra Jy	A ¹ , Yoshitaka FUJIMOTO ¹ , Istitute of Technology, Quantum Physics and Fechnology, ³ Materials

¹Graduate School of Information Science and Technology, Hokkaido University, ²Research Institute for Electronic Science, Hokkaido University

D4-11-P01 Repair of Multifunctional Two Dimension Structure by Additional Growth of AIN Atomic Layer in MEE Mode

December 11, 2019 — Poster Session
Time 19:00–20:30 Room Trade-0

Yuta KAMADA, Tomoya TAKEUCHI, Riku SHAMOTO, Akihiro HASHIMOTO University of Fukui

D4-11-P02

Orientation Control of a-axis in InN Growth by AIN/ Epitaxial Graphene/4H-SiC(0001)

<u>Riku SHAMOTO</u>, Yuta KAMADA, Akihiro HASHIMOTO University of Fukui

D4-11-P03

Mapping of Photo-Electrochemical Etched Ni/ n-GaN Schottkey Contacts Using Scanning Internal Photoemission Microscopy

<u>Ryo MATSUDA</u>¹, Fumimasa HORIKIRI², Yoshinobu NARITA², Takehiro YOSHIDA², Tomoyoshi MISHIMA³, Kenji SHIOJIMA¹ ¹University of Fukui, ²SCIOCS, ³Hosei University

D4-11-P04

High Breakdown-Capability Vertical GaN p-n Junction Diodes

<u>Hiroshi OHTA</u>¹, Naomi ASAI¹, Fumimasa HORIKIRI², Yoshinobu NARITA², Takehiro YOSHIDA², Tomoyoshi MISHIMA¹ ¹HOSEI University, ²SCIOCS Co. Ltd

D4-11-P05

Contactless Photoelectrochemical Etching of n-GaN in $K_2S_2O_8$ solution

Masachika TOGUCHI¹, Kazuki MIWA¹, Fumimasa HORIKIRI², Noboru FUKUHARA², Yoshinobu NARITA², Takehiro YOSHIDA², Taketomo SATO¹ ¹Hokkaido University, ²SCIOCS CO., Ltd.

D4-11-P06

Precise Control in Threshold Voltage of AlGaN/GaN HEMTs by Photoelectrochemical Etching

<u>Yuto KOMATSU</u>, Masachika TOGUCHI, Taketomo SATO Hokkaido University

D4-11-P07

Effect of Optical and Acoustic Phonons on Optical Properties of Yb_2O_3 and Lu_2O_3 Thin Films

Takaho ASAI¹, Takayuki MAKINO¹, K KAMINAGA², Daichi OKA³, Tomoteru FUKUMURA^{2,3} ¹University of Fukui, ²Tohoku University

Cluster E Magnet and Spintronics

Symposium

- E-1 New Aspects of Understanding Magnetic Materials
- E-2 Spin Conversion Phenomena in Spin Orbit Materials
- E-3 Quantum State in Low Symmetry Environment Probed by Advanced Spin Polarized Quantum Beam

- December 12–13, 2019 – Symposium E-1

New Aspects of Understanding Magnetic Materials

Organizers

Takashi MIYAKE (National Institute of Advanced Industrial Science and Technology) Chiharu MITSUMATA (National Institute for Materials Science) Leonid POUROVSKII (Ecole Polytechnique)

December 12, 2019

Oral Session 5

Time 14:00-16:00 Room Mont-3

Chairperson Christian ELSÄSSER

E1-12-I01 ► Invited

14:00-14:30

Magnetic Anisotropy in $L1_{\mbox{\tiny 0}}\mbox{-}FeNi$ Magnet: Experiment and Theory

<u>Masaki MIZUGUCHI</u>, Koki TAKANASHI Tohoku University

E1-12-002

14:30-14:45

A Brief Review of MnBi-Based Hard Magnetic Materials Jun CUl¹

¹Critical Materials Institute, Ames Laboratory, ²Materials Science & Engineering, Iowa State University

E1-12-I03 ► Invited

14:45-15:15

Crystal field, Kondo effect and magnetic anisotropy in perspective rare-earth based hard magnets

Leonid POUROVSKII^{1,2}

¹CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France, ²Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

E1-12-004

15:15-15:30

Optimal *4f-3d* Exchange Couplings in Rare-Earth Permanent Magnets

Munehisa MATSUMOTO¹, Takafumi HAWAI^{1,2}, Kanta ONO^{1,2,3} ¹Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), ²Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, ³Materials Research by Information Integration Initiative, National Institute for Materials Science

E1-12-005

15:30-15:45

First-principles study of interface magnetism in materials structures of Nd-Fe-B sintered magnets

<u>Asako TERASAWA</u>, Yoshihiro GOHDA Tokyo Institute of Technology

E1-12-006

15:45-16:00

Heterogeneous Sm-Co Sintered Magnets With Improved Flexural Strength BAOZHI CUI

Ames Laboratory, US Department of Energy

- December 13, 2019 -

Oral Session 7

Time 9:00-11:30 Room Mont-4

Chairperson Leonid POUROVSKII

E1-13-I01 Invited

9:00-9:30

Functional magnetic materials from data-mining and self-organized maps

Olle ERIKSSON^{1,2}

¹Uppsala University, ²Örebro University

9:30-10:00

Screening of rare-earth-lean intermetallic 1-11-X, 1-12-X, and 1-13-X compounds for hard-magnetic applications Christian ELSAESSER

Fraunhofer IWM

E1-13-I02 ►Invited

E1-13-003

10:00-10:15

Thermodynamic Stability Study of Substitutional Elements in (R,M)(Fe,X)₁₂ Structure using Special Quasirandom Structures

<u>Arkapol SAENGDEEJING</u>, Ying CHEN Tohoku University

►Invited

10:30-11:00

Ensemble Learning Reveals Similarity Between Rareearth Transition Metal Binary Alloys

<u>Hieu Chi DAM</u>^{1,2}, Nguyen Duong NGUYEN¹, Viet Cuong NGUYEN³, Hiori KINO², Takashi MIYAKE^{2,4} ¹Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan, ²National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan, ³HPC Systems Inc., Minato, Tokyo 108-0022, Japan, ⁴CD-FMat, Advanced Institute of Science and Technology, 1-1-1 Umezono, Tsukuba 305-8568, Japan

E1-13-005

11:00-11:15

Can Non-Critical Rare Earths Be Used For Permanent Magnets?

David PARKER Oak Ridge National Laboratory

E1-13-I04

E1-13-006

11:15-11:30

Cerium-Based Gap Magnets. Recent Advances In Understanding And Optimization.

Andriy PALASYUK¹, Savannah DOWNING², Olena PALASYUK^{1,3}, Tae-Hoon KIM¹, Matthew LYNN¹, Lin ZHOU¹, Matthew KRAMER^{1,3}, Sergey BUD'KO^{1,2}, Paul CANFIELD^{1,2}

¹Ames Laboratory, ²Department of Physics and Astronomy, Iowa State University, ³Department of Material Science and Engineering, Iowa State University

E1-13-I08 Invited

14:30-15:00

15:00-15:15

15:15-15:30

Atomistic Approach to the Nd₂Fe₁₄B magnet

Seiji MIYASHITA^{1,36}, Yuta TOGA⁶, Masamichi NISHINO²⁶, Taichi HINOKIHARA³⁶, Ismail UYSAL²⁶, Akimasa SAKUMA⁴, Takashi MIYAKE⁵, Hisazumi AKAl³⁶, Satoshi HIROSAWA⁶ ¹The Physical Society of Japan, ²National Institute for Materials Science(NIMS), ³Institute for Solid State Physics, The University of Tokyo, ⁴Department of Applied Physics, Tohoku University, ⁵CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), ⁶ESICMM(The Elements Strategy Initiative Center for Magnetic Materials), NIMS

E1-13-009

Temperature dependence of coercivity in $Nd_2Fe_{14}B$ atomistic spin model

<u>Yuta TOGA</u>^{1,6}, Seiji MIYASHITA^{2,3,6}, Akimasa SAKUMA⁴, Takashi MIYAKE^{5,6}

¹National Institute for Materials Science (NIMS), ²The Physical Society of Japan, ³Institute for Solid State Physics, The University of Tokyo, ⁴Department of Applied Physics, Tohoku University, ⁵National Institute of Advanced Industrial Science and Technology (AIST), ⁶Elements Strategy Initiative Center for Magnetic Materials (ESICMM)

E1-13-010

Micromagnetic simulation of magnetization reversals and domain wall motions inside permanent magnet

<u>Hiroshi TSUKAHARA</u>¹, Kaoru IWANO¹, Tadashi ISHIKAWA¹, Chiharu MITSUMATA², Kanta ONO¹

¹High Energy Accelerator Research Organization, ²National Institute for Materials Science E1-13-I11 ► Invited

15:30-16:00

16:30-16:45

16:45-17:00

Ginzburg-Landau Type Analysis of Permanent Magnets with Perpendicular Anisotropy

Kaoru IWANO¹, Chiharu MITSUMATA², Hiroshi TSUKAHARA¹, Kanta ONO¹

¹High Energy Research Organization, ²National Institute of Materials Scinece

December 13, 2019 -

Oral Session 9

Time 16:30-17:30 Room Mont-4

Chairperson Stefan BLÜGEL

E1-13-012

A first-principles study on magnetic damping at Fe/ Mg0(001)

Yoshio MIURA

National Institute for Materials Science

E1-13-013

Theoretical Study for Interfacial Magnetic Anisotropy in Magnetic Tunnel Junctions

Keisuke MASUDA, Yoshio MIURA

National Institute for Materials Science (NIMS)

E1-13-014

Withdrawal

E1-13-015

17:15-17:30

17:00-17:15

Study on magnetization dynamics in magnetic wires on $LiNbO_3$

<u>Shunya SAEGUSA</u> University of Hyogo

- December 12, 2019 -

Poster Session

Time 16:30-18:00 Room Trade-0

E1-12-P01

First-principles Study on Electric Structure and Magnetic Properties of Ytttrium Iron Garnet from Constrained DFT Approach

<u>Hiroki NAKASHIMA</u>, Abdul-Muizz PRADIPTO, Toru AKIYAMA, Tomonori ITO, Kohji NAKAMURA Mie University

E1-12-P02

Electric Field Effect on Magnetocrystalline Anisotropy in 3d Transition-metal Thin Films

Thi Phuong Thao NGUYEN Osaka University

E1-12-P03

Computational materials design of spin-gapless quaternary Heusler alloys

Fumiaki KURODA¹, Tetsuya FUKUSHIMA^{1,2,3}, Tamio OGUCHI^{1,2}

¹The Institute of Scientific and Industrial Research, Osaka Univ., ²Center for Spintronics Research Network, Osaka Univ., ³Institute for NanoScience Design, Osaka Univ.

E1-12-P04

Theoretical Sm-Fe-Cu ternary phase diagram for subphase-exploration of SmFe₁₂ permanent magnets

Sonju KOU¹, Taichi ABE², Yoshihiro GOHDA¹ ¹Tokyo Institute of Technology, ²National Institute for Materials Science

E1-12-P05

First-principles based calculation of magnetic properties at finite temperature

Shotaro DOI

National Institute of Advanced Industrial Science and Technology

E1-12-P06

Magnetic properties of Fe-doped CuCrO₂ Electrospun nanofibers

Rattakarn YENSANO

Department of Physics, Faculty of Science, Khon Kaen University

E1-12-P07

Theoretical Prediction of Maximum Curie temperatures of Fe-based Dilute Magnetic Semiconductors by Firstprinciples Calculations

- Tetsuya FUKUSHIMA^{1,2,3}, Hikari SHINYA^{3,4}, Akira MASAGO³, Kazunori SATO^{3,5}, Hiroshi KATAYAMA-YOSHIDA⁶
- ¹Institute for NanoScience Design, Osaka University, ²Center for Spintronics Research Network, Osaka
- University, ³Research Institute of Electrical Communication, Tohoku University, ⁴Graduate School of Engineering, Osaka University, ⁵Center for Spintronics Research Network, The University of Tokyo

E1-12-P08

Search for Stable Compounds in Y-Fe Binary System: Application of Evolutionary Construction Technique of Formation Energy Convex Hull

Takahiro ISHIKAWA¹, Takashi MIYAKE^{2,1}

¹ESICMM, National Institute for Materials Science, ²CD-FMat, National Institute of Advanced Industrial Science and Technology

E1-12-P09

Linearly Independent Descriptor Generation Method for Interpretable Modeling

Hitoshi FUJII^{1,2}, Tetsuya FUKUSHIMA^{3,4}, Tamio OGUCHI^{1,2} ¹National Institute for Materials Science, ²Institute of Scientific and Industrial Research, ³Institute for NanoScience Design, ⁴Institute for Datability Science

E1-12-P10

Effects of Electron-phonon Scattering on Temperature Dependence of Half-metallicity of Co₂MnSi

Naomi HIRAYAMA, Hisazumi AKAI The Institute for Solid State Physics, The University of Tokyo

E1-12-P11

Fabrication of L1₀-type FeCo ordered structure using a periodic Ni buffer layer

Hisaaki ITO¹, Masahiro SAITO¹, Toshio MIYAMACHI², Fumio KOMORI², Tomoyuki KOGANEZAWA³, Masaki MIZUGUCHI^{4,5}, Masato KOTSUGI¹

¹Tokyo University of Science, ²The Institute for Solid State Physics, The University of Tokyo, ³Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), ⁴Institute for Materials Research, Tohoku University, ⁵Center for Spintronics Research Network, Tohoku University

E1-12-P12

Evidence of Non-Joulian Magnetostriction for Fe-Ga and Fe-Al Single Crystal Alloys.

Masaki FUJITA Tokyo City University

E1-12-P13

First-principles electronic structure calculations of rareearth nitrides by using quasi-particle self-consistent GW method

Kazunori SATO^{1,2}, Takao KOTANI³

¹Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, ²Center for Spintronics Research Network (CSRN), Osaka University, ³Department of Applied Mathematics and Physics, Tottori University

E1-12-P14

Magnetic Bulk Rashba Effect in Ferroelectric Materials: A First-Principles Study

Kunihiko YAMAUCHI¹, Paolo BARONE², Silvia PICOZZI² ¹ISIR-SANKEN, Osaka University, ²Consiglio Nazionale delle Ricerche (CNR-SPIN)

E1-12-P15

First-principles calculation of $(R, Zr)(Fe, Co, Ti)_{12}(R = Y,$ Nd. Sm)

Taro FUKAZAWA^{1,2}, Yosuke HARASHIMA^{1,2,3}, Takashi MIYAKE¹

¹CD-FMat, National Institute of Advanced Industrial Science and Technology, ²ESICMM, National Institute for Materials Science, ³IMaSS, Nagoya University

E1-12-P16

First-principles study of magnetic properties of Nd-Fe alloys in Nd-Fe-B magnets

Yuta AINAI Tokyo Tech

E1-12-P17

First-Principles Study on Piezoelectricity and Magnetic Stability in $Bi(Fe,Co)O_3$

<u>Hiroshi KATSUMOTO</u>, Kunihiko YAMAUCHI, Tamio OGUCHI Institution of Scientific and Industrial Research, Osaka University

E1-12-P18

Spin wave dispersion of 3*d* ferromagnets based on QSGW calculations

Haruki OKUMURA¹, Kazunori SATO¹, Takao KOTANI² ¹Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, ²Department of Applied Mathematics and Physics, Tottori University

E1-12-P19

Magnetic polaron and unconventional magneto-transport properties in single crystalline $EuBiTe_3$ compound

<u>Won Hyuk SHON</u>¹, Jong-Soo RHYEE¹, Yingshi JIN², Sung-Jin KIM²

¹Kyung Hee University, ²Ewha Womans University

December 11, 2019 – Symposium E-2

Spin Conversion Phenomena in Spin Orbit Materials

Organizers

YoshiChika OTANI (ISSP University of Tokyo) Akira OIWA (ISIR Osaka University)

December 11, 2019 -

Oral Session 2

Time 14:00-16:20 Room Miel-5

Chairpersons A. OIWA, T. HIGO

E2-11-I01 ► Invited

14:00-14:25

Large time-reversal-odd responses in the topological antiferromagnet Mn₃Sn

<u>Tomoya HIGO</u>^{1,2}, Huiyuan MAN^{1,3}, Muhammad IKHLAS¹, Danru QU^{1,4}, Yoshichika OTANI^{1,2,5}, Satoru NAKATSUJI^{1,2,3,6} ¹ISSP, University of Tokyo, ²JST-CREST, ³Johns Hopkins University, ⁴Institute of Physics, Academia Sinica, ⁵RIKEN-CEMS, ⁶Dept. of Physics, University of Tokyo

E2-11-002

14:25-14:40

Magneto-transport properties in the chiral antiferromagnet Mn₃Sn thin film

Ayuko KOBAYASHI¹, Danru QU^{1,2}, Tomoya HIGO^{1,3}, Satoru NAKATSUJI^{1,3,4,5}, Yoshichika OTANI^{1,3,6}

¹ISSP, University of Tokyo, ²Institute of Physics, Academia Sinica, ³JST-CREST, ⁴Johns Hopkins University, ⁵Dept. of Physics, University of Tokyo, ⁶RIKEN-CEMS

E2-11-003

Large Spin Anomalous Hall Effect in L10-FePt

Takeshi SEKI^{1,2}, Satoshi IIHAMA³, Tomohiro TANIGUCHI⁴, Koki TAKANASHI^{1,2}

¹Institute for Materials Research, Tohoku University, Japan, ²Center for Spintronics Research Network, Tohoku University, Japan, ³WPI Advanced Institute for Materials Research, Tohoku University, Japan, ⁴AIST, Japan

E2-11-004

14:55-15:10

Observation of Inverse Spin Hall Effect at First-order Magnetic Phase Transition Temperature

Kenta MATSUMOTO¹, Kouta KONDOU^{1,2}, Tomoya HIGO¹, Jamie R. MASSEY³, Rowan C. TEMPLE³, Christopher H. MARROWS³, YoshiChika OTANI^{1,2} ¹ISSP, the University of Tokyo, ²RIKEN-CEMS, ³School of Physics and Astronomy, University of Leeds

15:10-15:35

Magnetic spin Hall effect in chiral antiferromagnet Mn₃Sn

Kouta KONDOU^{1,2,3}, Motoi KIMATA³, Hua CHEN^{4,5}, Satoshi SUGIMOTO³, Prasanta Kumar MUDULI³, Ikhlas MUHAMMAD³, Takahiro TOMITA^{2,3}, Allan Hugh MACDONALD⁴, Satoru NAKATSUJI^{2,3}, Yoshichika OTANI^{1,2,3}

¹RIKEN, ²CREST, Japan Science and Technology Agency (JST), ³Institute for Solid State Physics, University of Tokyo, ⁴Department of Physics, University of Texas at Austin, ⁵Department of Physics, Colorado State University

E2-11-006

15:35-15:50

Semi-metallic bulk generated spin-orbit torque in disordered topological insulator

Tenghua GAO, Kazuya ANDO Keio University

E2-11-007

15:50-16:05

Comparison of Spin Hall Angles for Epitaxial and Polycrystalline Platinum Thin Films

Zheng ZHU¹, Tomoya HIGO^{1,2}, Junyeon KIM³, Kenta MATSUMOTO¹, Hironari ISSHIKI¹, Danru QU⁴, Kouta KONDOU³, Satoru NAKATSUJI^{1,2}, Yoshichika OTANI^{1,2,3} ¹Institute for Solid State Physics, The University of Tokyo, ²JST CREST, ³RIKEN-CEMS, ⁴Institute of Physics, Academia Sinica

E2-11-008

16:05-16:20

Spin Hall effect in highly oriented bismuth by using spintorque ferromagnetic resonance

Masayuki MATSUSHIMA¹, Yuichiro ANDO¹, Ryo OHSHIMA¹, Sergey DUSHENKO¹, Ei SHIGEMATSU¹, Takeshi KAWABE², Teruya SHINJO¹, Shinji MIWA², Masashi SHIRAISHI¹ ¹Kyoto University, ²The University of Tokyo

December 11, 2019

Oral Session 3

Time 16:30-18:35 Room Miel-5

Chairpersons K. KONDOU, A. OIWA

E2-11-I09 ►Invited

16:30-16:55

Spintronic operations with antiferromagnets

Takahiro MORIYAMA Kyoto University

E2-11-010

16:55-17:10

Spin currents in nearly-compensated ferrimagnetic insulators

Rafael RAMOS

Advanced Institute for Materials Research, Tohoku University

14:40-14:55

E2-11-011

17:10-17:25

Conversion between electron spin and phonon angular momentum

<u>Masato HAMADA</u>, Shuichi MURAKAMI Tokyo Institute of Technology

E2-11-012

17:25-17:40

An effective way to control the orbital magnetic moment Shengqun SU

IMCE, Kyushu University

E2-11-I13 Invited

17:40-18:05

Optical excitation and detection of ultrafast antiferromagnetic state

<u>Takuya SATOH</u> Tokyo Institute of Technology

E2-11-014

18:05-18:20

Excitation and propagation dynamics of spin waves observed by phase-resolved spin-wave tomography

Yusuke HASHIMOTO Tohoku University

E2-11-015

18:20-18:35

Ultrafast spin dependent phenomena and opt-magnetic control in ferrimagnetic rear-earth transition metal alloy

Arata TSUKAMOTO Nihon University

December 11, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

E2-11-P01

Electrical detection of all-optical magnetization switching in ferrimagnetic GdFeCo alloy by anomalous Hall effect

Yuichi KASATANI^{1,2}, Hiroki YOSHIKAWA¹, Arata TSUKAMOTO¹ ¹Nihon University, ²JSPS Research Fellow

E2-11-P02

ColrMnAI: A potential candidate for spintronics application

<u>Tufan ROY</u>¹, Masahito TSUJIKAWA^{1,2}, Takuro KANEMURA¹, Masafumi SHIRAI^{1,2,3}

¹Research Institute of Electrical Communication, Tohoku University, ²Center for Spintronics Research Network, Tohoku University, ³Center for Science and Innovation in Spintronics (CSIS), Core Research Cluster (CRC), Tohoku University

E2-11-P03

Nonreciprocal spin current conversion from non-uniform charge-current flow

<u>Genki OKANO</u>¹, Mamoru MATSUO^{2,3}, Yuichi OHNUMA^{2,3}, Sadamichi MAEKAWA^{3,2}, Yukio NOZAKI^{1,4}

¹Department of Physics, Keio University, ²Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, ³RIKEN CEMS, ⁴Center for Spintronics Research Network, Keio University

E2-11-P04

Magnetic properties of a $\rm Co_2FeSi/BaTiO_3$ interfacial multiferroic system

<u>Shinya YAMADA^{1,2}</u>, Yuki TERAMOTO², Taichi MURATA², Daishi MATSUMI², Kohei KUDO², Tomoyasu TANIYAMA³, Kohei HAMAYA^{1,2}

¹Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, ²Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, ³Department of Physics, Nagoya University

E2-11-P05

First-principles Calculation of Spin Properties in Twodimensional Systems Under In-plane Electric Fields

Naoya YAMAGUCHI¹, Fumiyuki ISHII²

¹Graduate School of Natural Science and Technology, Kanazawa University, ²Nanomaterials Research Institute, Kanazawa University

E2-11-P06

Optical detection of magnetization dynamics and damping for synthetic antiferromagnet

Akira KAMIMAKI^{1,2}, Satoshi IIHAMA^{2,3},

Tomohiro TANIGUCHI⁴, Shigemi MIZUKAMI^{2,3,5} ¹Department of Applied Physics, Graduate School of Engineering, Tohoku University, Japan, ²WPI Advanced Institute for Materials Research (AIMR), Tohoku University, Japan, ³Center for Spintronics Research Network (CSRN), Tohoku University, Japan, ⁴National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Japan, ⁵Center for Science and Innovation in Spintronics (CSIS), Core Research Cluster (CRC), Tohoku University, Japan

E2-11-P07

Spin dependent transport properties in the magnetic tunnel junctions with a Cr₂O₃ barrier layer

<u>Tomohiro ICHINOSE¹</u>, Kelvin ELPHICK², Atsufumi HIROHATA², Shigemi MIZUKAMI^{1,3,4} ¹WPI-AIMR, Tohoku University, ²Department of Electronic Engineering, University of York, ³CSIS, Tohoku University, ⁴CSRN, Tohoku University

E2-11-P08

Inverse Edelstein effect Induced by magnon-phonon Coupling

Mingran XU¹, Jorge PUEBLA², Florent AUVRAY¹, Bivas RANA², Kouta KONDOU², Yoshichika OTANI^{1,2} ¹Institute for Solid State Physics, University of Tokyo, ²CEMS, RIKEN

E2-11-P09

Electric field control of damping constant

<u>Bivas RANA</u>¹, Collins Ashu AKOSA¹, Gen TATARA¹, YoshiChika OTANI^{1,2}

 $^{1}\mbox{CEMS},$ RIKEN, $^{2}\mbox{Institute}$ for Solid State Physics, University of Tokyo

E2-11-P10

Gate control of intra-Landau level transition and observation of spin precession at quantum Hall state

Takase SHIMIZU, Yoshiaki HASHIMOTO,

Taketomo NAKAMURA, Akira ENDO, Shingo KATSUMOTO The institute for solid state physics, the University of Tokyo

E2-11-P11

Spin transport properties in antiferromagnetic $L1_2\mathchar`$ ordered $Mn_3 Ir$ thin films

<u>Hiroyuki IWAKI</u>, Takahiro MORIYAMA, Tetsuya IKEBUCHI, Kento ODA, Yoichi SHIOTA, Teruo ONO Institute for Chemical Research, Kyoto University

E2-11-P12

Magnon-phonon interaction induced thermal Hall effect in the triangular antiferromagnet

<u>Takuma SAITO</u>

Department of Applied Physics, The University of Tokyo

E2-11-P13

Crystal orientation dependence of the spin current transmission in single crystalline NiO thin films

<u>Tetsuya IKEBUCHI</u>, Takahiro MORIYAMA, Kent ODA, Hiroyuki IWAKI, Teruo ONO Kyoto University

E2-11-P14

Fabrication and rectifying properties of epitaxial magnetic tunnel junctions with metastable rock-salt ZnO tunnel barrier

<u>Hidekazu SAITO</u>¹, Shintaro KON^{1,2}, Yukiko YASUKAWA², Hiroshi IMAMURA¹, Shinji YUASA¹

¹National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, ²Chiba Institute of Technology

E2-11-P15

Photoinduced Rashba spin-to-charge conversion via an interfacial unoccupied state

Jorge PUEBLA Center of Emergent Matter Science RIKEN

E2-11-P16

Spin-blockade and Rashba-resonance in a double quantum well diode

<u>Taketomo NAKAMURA</u>, Yoshiaki HASHIMOTO, Shingo KATSUMOTO The University of Tokyo

E2-11-P17

Spin dynamics in nanostructures probed by quantum dot sensors

Tomohiro OTSUKA¹, Takashi NAKAJIMA², Matthieu R. DELBECQ², Peter STANO², Shinichi AMAHA², Jun YONEDA², Kenta TAKEDA², Gilles ALLISON², Sen Ll², Akito NOIRI², Takumi ITO², Daniel LOSS², Arne LUDWIG³, Andreas D. WIECK³, Seigo TARUCHA²

¹Tohoku University, ²RIKEN, ³Ruhr-Universität Bochum

E2-11-P18

Quantum spin transport to self-assembled InGaAs guantum dots through AlGaAs/GaAs superlattice

<u>Satoshi HIURA</u>¹, Junichi TAKAYAMA¹, Takayuki KIBA², Akihiro MURAYAMA¹

¹Hokkaido University, ²Kitami Institute of Technology

E2-11-P19

Detection of optical spin orientation by inverse spin Hall effect in (110)-AlGaAs/GaAs quantum well

<u>Yuji SAKAI</u>¹, Tomohiro NAKAGAWA¹, Julian RITZMANN², Andreas WIECK², Arne LUDWIG², Akira OIWA¹ ¹ISIR, Osaka University, ²Ruhr-Universität

December 11–13, 2019 –

Symposium E-3

Quantum State in Low Symmetry Environment Probed by Advanced Spin Polarized Quantum Beam

[Organizers]

Koichiro SHIMOMURA (High Energy Accelerator Research Organization) Wataru HIGEMOTO (Japan Atomic Energy Agency)

December 11, 2019

Oral Session 2

Time 14:00-16:00 Room Trade-2

Chairperson E. TORIAI

E3-11-001

14:00-14:25

Coexistence of Dynamical and Static Component of Molecular Dynamics in Polybutadiene Probed by Muon Spin Relaxation

Soshi TAKESHITA¹, Hirotaka OKABE¹, Akihiro KODA¹, Masatoshi HIRAISHI¹, Kenji KOJIMA^{1,2}, Ryosuke KADONO¹, Hideki SETO¹, Tomomi MASUI³, Noboru WAKABAYASHI³ ¹High Energy Accelerator Research Organization (KEK), ²TRIUMF, ³Sumitomo Rubber Industries, Ltd

E3-11-002

14:25-14:50

µSR Study of Glycine, Oligoglycine and N-methylacetamide

<u>Yoko SUGAWARA</u>^{1,2}, Amba D. PANT³, Takahisa FUJITA², Shigefumi YAMAMURA², Akihiro KODA⁴, Wataru HIGEMOTO⁵, Koichiro SHIMOMURA⁴, Katsuhiko ISHIDA⁶, Eiko TORIKAI⁷, Kanetada NAGAMINE⁴

¹Toyota Physical & Chemical Research Institute, ²Kitasato University, ³Ibaraki University, ⁴IMSS, KEK, ⁵Atomic Energy Agency, ⁶RIKEN, ⁷University of Yamanashi

E3-11-003

14:50-15:15

Direct Observation of Electron and Proton Transfers in Enzymatic Reactions by μSR

Tamiko KIYOTAN¹, <u>Ichiro TANAKA²</u>, Nobuo NIIMURA² ¹Showa Pharmaceutical University, ²Ibaraki University

E3-11-004

15:15-15:40

An Application of μSR in Biology, The Electron Transfer in DNA

Isao WATANABE¹, Harison ROZAK^{1,2,3}, Wan Nurfadhilah ZAHARIM^{2,3}, Issei MIYAZAKI⁴, Nur Eliana ISMAIL², Siti Nuramira ABU BAKAR², Daruliza KERNAIN², Razip SAMIAN², Koichi ICHIMURA⁴, Mohamed Ismail MOHAMED-IBRAHIM^{2,3}, Shukri SULAIMAN^{2,3} ¹RIKEN, ²Universiti Sains Malaysia, ³USM-RIKEN International Center for Ageing Science, ⁴Hokkaido University

E3-11-005

First Principles Theory of Hyperfine Interactions in Guanine Nucleobase

Isao WATANABE¹, <u>Wan Nurfadhilah ZAHARIM</u>^{2,3}, Shukri SULAIMAN^{2,3}, Siti Nuramira ABU BAKAR^{2,3}, Nur Eliana ISMAIL^{2,3}, Harison ROZAK^{1,2,3} ¹RIKEN, ²Universiti Sains Malaysia, ³USM-RIKEN International Center for Ageing Science, ⁴Hokkaido University

- December 11, 2019

Oral Session 3

Time 16:30-18:35 Room Trade-2

Chairperson K. SHIMOMURA

► Invited 16:30-16:55

Photoexcited $\ensuremath{\mu}\mbox{SR}$ Experiments at the ISIS Pulsed Neutron and Muon Source

Koji YOKOYAMA, James S. LORD

ISIS, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom

E3-11-007

E3-11-I06

16:55-17:20

15:40-16:00

Progress and prospects of new DC muon source and muon analysis at MuSIC-RCNP, Osaka University

Dai TOMONO Osaka University

E3-11-008

17:45-18:10

18:10-18:35

Generation of Ultra Cold Muonium from Silicon into Vacuum

<u>Amba Datt PANT</u>^{1,2}, Hiromi IINUMA¹, Katsuhiko ISHIDA³, Chiori OGHANE¹, Moe SUGITA¹, Koichiro SHIMOMURA² ¹Institute of Quantum Beam Science, Ibaraki University, Mito, 310-8512, Japan, ²Institute of Materials Structure Science, KEK, Tsukuba, 305-0801, Japan, ³Advanced Meson Science Laboratory, RIKEN, Wako, 351-0198, Japan

E3-11-009

Muon Spin Resonance Experiment in the High Magnetic Field at J-PARC

Shoichiro NISHIMURA

High Energy Accelerator Research Organization

E3-11-010

Negative-Muon Decelerator for Material Science

Chihiro OHMORI KEK

um H Sympo

December	12, 2019 ———	
Oral Ses	ssion 4	
Time 9:00-11:30	Room Trade-3	
Chairperson T. ADACHI		

Transformation of interstitial proton into substitutional hydride in reduced SrTiO $_{\rm 3}$ simulated with positively

charged muons

<u>Takashi U. ITO</u>^{1,2}, Wataru HIGEMOTO^{1,2,3}, Akihiro KODA^{2,4}, Koichiro SHIMOMURA^{2,4}

¹Advanced Science Research Center, Japan Atomic Energy Agency, ²Muon Science Section, MLF Division, J-PARC Center, ³Department of Physics, Tokyo Institute of Technology, ⁴Institute of Materials Structure Science, High Energy Accelerator Research Organization

E3-12-002

9:25-9:50

Local Electronic Structure of Interstitial Hydrogen in Iron Disulfide

Ryosuke KADONO

Institute of Materials Structure Science, KEK

E3-12-003

9:50-10:15

Electronic Structure of Interstitial Hydrogen in Electride LaScSi Probed by Muon Spin Rotation Technique

Masatoshi HIRAISHI¹, Kenji KOJIMA^{1,2}, Hirotaka OKABE¹, Soshi TAKESHITA¹, Akihiro KODA^{1,2}, Ryosuke KADONO^{1,2}, Jiazhen WU³, Hideo HOSONO^{3,4}

¹KEK IMSS, ²SOKENDAI, ³MSL, Tokyo Tech., ⁴MCES, Tokyo Tech.

E3-12-I04 ► Invited

10:15-10:40

10:40-11:05

μSR Approach To The Understanding Of Hydrogen Embrittlement In Steels

<u>Nobuhiko NISHIDA</u> JAEA

E3-12-005

Muon Spin Relaxation in a Hydrogen Charged Al-0.2%Cu Alloy

<u>Katsuhiko NISHIMURA</u>¹, Kenji MATSUDA¹, Takahiro NAMIKI¹, Seungwon LEE¹, Wataru HIGEMOTO², Yasuhiro MIYAKA³, Hiroyuki TODA⁴, Kazuyuki SHIMIZU⁴

¹University of Toyama, ²Japan Atomic Energy Agency, ³High Energy Accelerator Research Organization, ⁴Kyushu University

E3-12-006

Hydrogen Absorption-Desorption Process in Palladium Studied by Muon Spectroscopy

Mototsugu MIHARA¹, Hideki ARAKI², Koichiro SHIMOMURA³, Wataru HIGEMOTO⁴, Masataka MIZUNO², Kazuki SUGITA², Yuki TANAKA², Yuta KITAYAMA², Dai TOMONO⁵, Eiko TORIKAI⁶, Wataru SATO⁷, Kanji OHKUBO², Ryoma MURAKAMI², Naoki MATSUOKA², Isao WATANABE⁸, Teiichiro MATSUZAKI⁸, Ryosuke KADONO³

¹Department of Physics, Osaka University, ²Division of Materials and Manufacturing Science, Osaka University, ³Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), ⁴Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), ⁵Research Center for Nuclear Physics (RCNP), Osaka University, ⁶University of Yamanashi, ⁷Institute of Science and Engineering, Kanazawa University, ⁸RIKEN Nishina Center for Accelerator-Based Science

December 12, 2019

Oral Session 5

Time 14:00-16:05 Room Trade-3

Chairperson W. HIGEMOTO

E3-12-007

14:00-14:25

14:25-14:50

11:05-11:30

Development of Ultra slow muon microscope to probe near surface and buried interface in materials and life science

<u>Eiko TORIKAI</u>^{1,2}, Yasuhiro MIYAKE^{2,3}, Ryosuke KADONO^{2,3}, Masahiko IWASAKI⁴

¹University of Yamanashi, ²High Energy Accelerator Research Organization, ³J-PARC Center, ⁴RIKEN

E3-12-008

Advanced Muon Spin Spectroscopy for Sustainable Society

Jun SUGIYAMA^{1,2,3}, Wataru HIGEMOTO²,

Koichiro SHIMOMURA³

¹CROSS-Tokai Neutron Science and Technology Center, ²Advanced Science Research Center, Japan Atomic Energy Agency, ³High Energy Accelerator Research Organization (KEK)

E3-12-009

14:50-15:15

15:15-15:40

Negative muon spin rotation with low-density gas target under transverse magnetic field

<u>Sohtaro KANDA</u>, Katsuhiko ISHIDA RIKEN

E3-12-010

Polarized neutron inelastic scattering technique

~powerful probe for solid state physics~

<u>Takatsugu MASUDA</u> University of Tokyo Spin-Polarized ³He Gas for Polarized Neutron Scattering Measurements

Takashi INO

KEK

December 12, 2019

Oral Session 6

Time 16:30-18:55 Room Trade-3

Chairperson R. KADONO

E3-12-012

16:30-16:55

Anisotropy of spontaneous magnetic field in chiral superconductor

Wataru HIGEMOTO¹, Takeshi OKAZAWA^{1,2}, Yuto ODA^{1,2}, Itsuku MIYAZAKI², Takashi U ITO¹, Yoshiyuki YOSHIDA³ ¹Advanced Science Research Center, Japan Atomic Energy Agency, ²Department of Physics, Tokyo Institute of Technology, ³National Institute of Advanced Industrial Science and Technology

E3-12-I13	Invited		16:55-17:20
-----------	---------	--	-------------

Spin Fluctuations in High-Temperature Superconductors Probed by Muon

Tadashi ADACHI Sophia University

E3-12-014

17:20-17:45

Magnetotransport and Superconductivity in Spin Momentum-Locked Surface State of Ion-Gated SrTiO₃

Tsutomu NOJIMA¹, Takumi OUCHI¹, Sunao SHIMIZU^{2,3}, Yoshihiro IWASA³

¹Institute for Materials Research. Tohoku University. ²Central Research Institute of Electric Power Industry, ³RIKEN Center for Emergent Matter Science, ⁴Quantum Phase Electronics Center and Department of Applied Physics, University of Tokyo

E3-12-015

17:45-18:10

Magnetism in T*-Type La_{1-x/2}Eu_{1-x/2}Sr_xCuO₄ Studied by **µSR** Measurement

Masaki FUJITA¹, Shun ASANO², Kota KUDO², Motofumi TAKAHAMA², Isao WATANABE³, Akihiro KODA⁴, Ryosuke KADONO⁴

¹Institute for Materials Research, Tohoku University, ²Department of Physics, Tohoku University, ³Advanced Meson Science Laboratory, The Institute of Physical and Chemical Research, ⁴Institute of Materials Structure Science, High Energy Accelerator Research Organization

E3-12-016

18:10-18:35

Superconducting Characteristics of MgO/MgB₂ Nanocomposites with a Self-Similar Fractal-Like Structure

Takashi UCHINO¹, Yusuke SETO¹, Takahiro SAKURAI¹, Hitoshi OHTA¹, Yoshifumi SAKAGUCHI², Kazuki OHISHI², Akihiro KODA³

¹Kobe University, ²CROSS, ³KEK

E3-12-017

A Possible Weak Magnetism in Overdoped La_{2-x}Sr_xCuO₄ Nanoparticles

Suci WINARSIH^{1,2,3}, Faisal BUDIMAN^{4,5}, Hirofumi TANAKA⁴, Tadashi ADACHI⁶, Takayuki GOTO⁶, Akihiro KODA⁷, Bambang SOEGIJONO², Budhy KURNIAWAN², Isao WATANABE^{1,2,3}

¹RIKEN, ²Universitas Indonesia, ³Hokkaido University, ⁴Kyushu Institute of Technology, ⁵Telkom University, ⁶Sophia University, ⁷High Energy Accelerator Research Organization (KEK)

- December 13. 2019 -

Oral Session 7

Time 9:00-11:45 Room Trade-1

Chairperson I. WATANABE

E3-13-001

Interplay of Magnetic, Electronic and Elastic Degrees of Freedom in Chiral Materials

Junichiro KISHINE

The Open University of Japan

E3-13-002

Search for Odd-Parity Augmented Multipoles and Cross-Correlation Phenomena in Antiferromagnetic Metals

Hiroshi AMITSUKA Hokkaido University

E3-13-003

9:50-10:15

10:15-10:40

10:40-11:05

9:00-9:25

9:25-9:50

Strong Enhancement of Spin-orbit Interaction in Alkali Metal Nanoclusters Incorporated into Zeolite A

Takehito NAKANO Ibaraki University

E3-13-004

Successive Change of the Motion in Na-loaded Low Silica-X Zeolite According to Loading Density of External Na Atom - An NMR Study -

Mutsuo IGARASHI¹, Peter JEGLIC², Takehito NAKANO³, Denis ARCON^{2,}

¹National Institute of Technology, Gunma College, Japan, ²Jozef Stefan Institute, Slovenia, ³Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Japan, ⁴Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

E3-13-005

Magnetic state of β -MnO₂ probed by muon spin spectroscopy

Hirotaka OKABE¹, R. Kadono¹, M. Hiraishi¹, A. Koda¹, S. Takeshita¹, K. M. Kojima², I. Yamauchi³, H. Sato⁴ ¹High Energy Accelerator Research Organization (KEK), ²TRIMF, ³Saga University, ⁴Chuo University

18:35-18:55

E3-13-006

11:05-11:25

Hole Doping Effect on Magnetic Ordering and Spin Dynamic of $(Eu_{1-x}Ca_x)_2 Ir_2O_7$ Studied by μ SR

<u>Utami WIDYAISWARI^{1,2,3}</u>, Julia ANGEL^{1,3}, Hironori NOMURA⁴, Tomoya TANIGUCHI⁴, Kazuyuki MATSUHIRA⁴, Akihiro KODA⁵, Budhy KURNIAWAN², Isao WATANABE^{1,2,3} ¹Meson Science Laboratory, RIKEN Nishina Center, Wako, Saitama, 351-0198, Japan, ²Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia, ³Department of Condensed Matter Physics, Hokkaido University, Sapporo, 060-0808, Japan, ⁴Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan, ⁵Muon Science Laboratory, Institute of Materials and Structural Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki, 319-1106, Japan

E3-13-007

11:25-11:45

The admixture of an *s*-wave component into *d*wave superconducting gap symmetry in organic superconductor λ -(BETS)₂GaCl₄ studied by µSR

DITA PUSPITA SARI¹, Retno ASIH^{2,3}, Koichi HIRAKI⁴, Takehito NAKANO³, Yasuo NOZUE³, Adrian HILLIER⁵, Yasuyuki ISHII¹, Isao WATANABE^{2,3}

¹Shibaura Institute of Technology, ²Meson Science Laboratory RIKEN, ³Osaka University, ⁴Fukushima Medical University, ⁵ISIS STFC Rutherford Appleton Laboratory

December 13, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

E3-13-P01

Neutron Spin Prism Method with High Energy Neutrons at J-PARC

<u>Masaki FUJITA</u> Institute for Materials Research, Tohoku University

E3-13-P02

Investigation of hydrogen states in semiconducting BaSi_2 by muon spin rotation

Takashi SUEMASU¹, <u>Zhihao XU</u>¹, Takuma SATO^{1,2}, Jumpei NAKAMURA³, Akiho KODA^{3,4}, Koichiro SHIMOMURA^{3,4} ¹University of Tsukuba, ²University Grenoble Aples, ³KEK, ⁴The Graduate University for Advanced Studies

E3-13-P03

μ SR study of the Long-range Ordered State in Organic Antiferromagnet λ -(BEDT-STF)₂FeCl₄

DITA PUSPITA SARI¹, Takaaki MINAMIDATE³, Noriaki MATSUNAGA⁴, Atsushi KAWAMOTO⁴, Isao WATANABE², Yasuyuki ISHII¹

¹Shibaura Institute of Technology, ²Meson Science Laboratory RIKEN, ³Condensed Molecular Material Laboratory RIKEN, ⁴Hokkaido University

E3-13-P04

Observation of Hole Localization on Apical Oxygen in $\rm Sr_2 lrO_4$ via Oxygen Spin Measured by μSR

Masanori MIYAZAKI¹, Mizuki ISHIHARA¹, Takumi KINOSHITA¹, Yuya NISHIYAMA¹, Hiroshi ISODA¹, Masatoshi HIRAISHI², Hirotaka OKABE², Kenji M. KOJIMA³, Akihiro KODA², Ryosuke KADONO², Shuji EBISU¹ ¹Muroran Institute of Technology, ²High Energy Accelerator Research organization, ³TRIUMF

E3-13-P05

The Effects of Split Valence Basis Sets on Muon Hyperfine Interaction in Guanine Nucleobase and Guanine Nucleotide Structures

WAN NURFADHILAH ZAHARIM^{1,2}, SHUKRI SULAIMAN¹, SITI NUR AFIFI AHMAD¹, SITI NURAMIRA ABU BAKAR¹, NUR ELIANA ISMAIL¹, HARISON ROZAK^{1,2}, ISAO WATANABE^{1,2,3}

¹UNIVERSITI SAINS MALAYSIA, ²RIKEN NISHINA CENTER, ³HOKKAIDO UNIVERSITY

E3-13-P06

Density Functional Theory Investigation of Muon Hyperfine Interactions in Au₂₅SR₁₈ Nanocluster

WAN NURFADHILAH ZAHARIM^{1,2}, SITI NUR AFIFI AHMAD¹, SHUKRI SULAIMAN¹, DANG FATIHAH HASAN BASERI¹, NOR ZAKIAH YAHAYA¹, HASNI ARSAD¹, LEE SIN ANG³, ISAO WATANABE^{2,4}

¹UNIVERSITI SAINS MALAYSIA, ²RIKEN NISHINA CENTER, ³UNIVERSITI TEKNOLOGI MARA, ⁴HOKKAIDO UNIVERSITY

E3-13-P07

Magnetic Phase Diagram of $(Y_{0.95 \cdot x}Cu_{0.05}Ca_x)_2 Ir_2 O_7$ Revealed by μSR

Julia ANGEL^{1,2}, <u>Utami WIDYAISWARI</u>^{1,2,3}, Hironori NOMURA⁴, Tomoya TANIGUCHI⁴, Kazuyuki MATSUHIRA⁴, Isao WATANABE^{1,2,3}

¹Meson Science Laboratory, RIKEN Nishina Center, ²Department of Condensed Matter Physics, Hokkaido University, ³Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, ⁴Faculty of Engineering, Kyushu Institute of Technology

E3-13-P08

DFT and µSR Studies on YBa₂Cu₃O₆ and La₂CuO₄

Irwan RAMLI^{1,2}, Muhammad Redo RAMADHAN^{1,2,3}, <u>Suci WINARSIH</u>^{1,2,3}, Mohamed Ismail MOHAMED IBRAHIM^{4,5}, Shukri SULAIMAN^{4,5}, Isao WATANABE^{1,2,3,4,5}

¹Meson Science Laboratory, RIKEN Nishina Center, ²Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, ³Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, ⁴Computational Chemistry and Physics Laboratory, School of Distance Education, Universiti Sains Malaysia, ⁵USM-RIKEN International Center for Ageing Science, School of Distance Education, Universiti Sains Malaysia

E3-13-P09

Shallow donor Hydrogen in TiO₂ studied by muSR Koichiro SHIMOMURA, Ryosuke KADONO, Hua LI KEK IMSS

Cluster F Energy

Symposium

- F-1 Battery Materials for Sustainability
- F-2 Catalysis and Catalyst Materials for Energy and Environment
- F-3 Advancements in Thermoelectric Materials and Applications
- F-4 Synchrotron X-ray Probes for Mesoscale Materials Science

December 12-13, 2019	F1-12-105 ► Invited 11:05-11:30
Symposium F-1	Rational Design of BIAN Based Binder/Additive for Li Ion Secondary Batteries
Battery Materials for Sustainability	Noriyoshi MATSUMI, Sai Gourang PATNAIK, Raman VEDARAJAN
[Organizers]	Japan Advanced Institute of Science and Technology
Atsuo YAMADA (The University of Tokyo)	December 12, 2019
Shinichi KOMABA (Tokyo University of Science) Naoaki YABUUCHI (Yokohama National University)	Oral Session 5
Yong-Sheng HU (Chinese Academy of Science) Shirley MENG (University of California, San Diego)	Time 14:00-16:05 Room Work-5
Rosa PALACIN (ICMAB-CSIC) Koji OHTA (Kyoto University)	Chairpersons Shinichi KOMABA, Seung-Taek MYUNG
December 12, 2019	F1-12-I06 • Invited 14:00-14:25
Oral Session 4	Phase and Structural Evolution of Layered Positive Electrodes
Time9:00-11:30RoomWork-5ChairpersonsAtsuo YAMADA, Alexis GRIMAUD,	UNSW
Shirley MENG, Patrik JOHANSSON	F1-12-107 Invited 14:25–14:50
Opening Talk Atsuo Yamada 9:00-9:10	Stable Cycling Performance of Manganese-based Cathode Materials for Rechargeable Sodium Batteries <u>Seung-Taek MYUNG</u> Sejong University
	F1-12-I08 ► Invited 14:50-15:15
F1-12-I01 ► Invited 9:10 How the water solvation structure affects its reduct for the development of aqueous electrolytes for Li-in batteries Alexis GRIMAUD	EVGENVANTIPUV
Collège de France, CNRS	F1-12-I09 ► Invited 15:15-15:40
F1-12-I02 ► Invited 9:35- Understanding Interfacial Electrochemistry on High Oriented Pyrolytic Graphite (HOPG) with Water-In-S	
Electrolyte	F1-12-I10 Invited 15:40-16:05
<u>Hye Ryung BYON</u> Korea Advanced Institute of Science and Technology	Operando X-ray Characterization of Multi-Scale Kinetic Limitations in Battery Electrodes
F1-12-I03 ► Invited 10:00-	-10:25 Karena CHAPMAN Stony Brook University
Robust Prussian Blue Cathodes for Potassium Aqu Battery with Ultralong Cycle Life and High Power	
Capability	Oral Session 7
Yaxiang LU Institute of Physics, Chinese Academy of Sciences	Time 9:00-11:20 Room Work-5
Break 10:25-10:40	Chairpersons Naoaki YABUUCHI, Monste CASAS-CABANAS, Yong-Sheng HU, Zheng CHEN

► Invited

10:40-11:05

Complex Ionic Liquids & Liquid Ionic Complexes

Patrik JOHANSSON^{1,2}, Piotr JANKOWSKI^{1,2,3}, Gustav ÅVALL¹ ¹Chalmers University of Technology, ²Alistore-European Research Institute, ³Warsaw University of Technology

F1-13-I01 Invited

9:00-9:25

Design of Li and Na fast ion conductors using highthroughput bond-valence calculations Montse CASAS-CABANAS CIC energiGUNE

F1-12-I04

F1-13-I02 Invited 9:25-9:50 Lithium Metal and the Solid Electrolyte Interphase; past, present and future Adam BEST **CSIRO** Manufacturing

F1-13-I03 Invited

Withdrawal

► Invited

Break 10:15-10:30

10:30-10:55

9:50-10:15

F1-13-I04 Fundamental Processes and Design Strategies for Alkali Metal-Oxygen Batteries Yi-Chun LU, Yu WANG

The Chinese University of Hong Kong

F1-13-I05 Invited 10:55-11:20

Leveraging Reversible Chemistry for Materials Sustainability in Energy Storage Zheng CHEN

University of California San Diego

December 13, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

F1-13-P01

Cation-disordered rocksalt oxides/oxyfluorides for highenergy rechargeable Li/Na batteries

Naoaki YABUUCHI

Yokohama National University

F1-13-P02

Appearance, manipulation, and visualization of lithiumion conduction in a La-Li-Co-O band insulator

Tsuyoshi TAKAMI¹, Yoshiyuki MORITA¹, Masao YONEMURA², Yoshihisa ISHIKAWA², Shingo TANAKA³, Masahiro MORI³, Toshiharu FUKUNAGA¹, Eiichiro MATSUBARA¹ ¹Kyoto University, ²High Energy Accelerator Research Organization, ³National Institute of Advanced Industrial Science and Technology

F1-13-P03

Assessing electrolyte-improved FeF₃ batteries: A universal description characterized by Fe nanoparticles

Tsuyoshi TAKAMI¹, Keitaro MATSUI², Hiroshi SENOH², Noboru TAGUCHI², Masahiro SHIKANO², Hikari SAKAEBE², Toshiharu FUKUNAGA¹

¹Kyoto University, ²National Institute of Advanced Industrial Science and Technology

F1-13-P04

Fabrication of Self-standing Three-Dimensional Porous TiO₂-Si Nano-scaffolds for High Volumetric Capacity Lithium Ion Microbatteries

Wen-Yin KO National Chung-Hsing University

F1-13-P05

Sensitized "Thermal" Cell Sachiko MATSUSHITA

Tokyo Institute of Technology

F1-13-P06

A Novel Cathode Material Na₂V₃O₇ for Sodium-Ion Batteries by High-throughput Search

Masanobu NAKAYAMA^{1,2,3}, Naoto TANIBATA^{1,2}, Hayami TAKEDA

¹Nagoya Institute of Technology, ²ESICB, Kyoto University, ³Mi2i, National Institute for Materials Science

F1-13-P07

Computational study of redox process and formation of defects in NaMnO₂ cathode material of Na-ion battery Maxim SHISHKIN, Hirofumi SATO

ESICB, Kyoto University

F1-13-P08

Ion Conduction Mechanism in Highly Concentrated

Sulfolane-Based Electrolytes for Sodium-Ion Batteries Kaoru DOKKO^{1,2}, Yukihiro OKAMOTO¹, Kazuhide UENO¹, Masayoshi WATANABE¹

¹Yokohama National University, ²Kyoto University

F1-13-P09

Cathode properties of amorphous xNaF-FeSO₄ Systems $(1 \le x \le 2)$ for sodium ion batteries

Ayuko KITAJOU^{1,4}, Hiroyoshi MOMIDA^{2,4}, Takahiro YAMASHITA³, Tamimo OGUCHI^{2,4}, Shigeto OKADA^{3,4} ¹Yamaguchi University, ²Osaka University, ³Kyushu University, ⁴ESICB, Kyoto University

F1-13-P10

Preparation And Characterization Of a Lithium Ion Conductor Cubic-Li₂FeCl₄

Masashi KATO¹, Koki NAKANO¹, Hayami TAKEDA^{1,2}, Naoto TANIBATA^{1,2}, Masanobu NAKAYAMA^{1,2,3} ¹Nagoya Institute of Technology, ²Kyoto University ESICB, ³National Institute for Materials Science Mi2i & GREEN

F1-13-P11

First-Principles Calculations of X-Ray Absorption Spectra in NaFeSO₄F Cathode for Exploring Na-Ion **Battery Reactions**

Hiroyoshi MOMIDA^{1,2}, Ayuko KITAJOU^{3,2}, Shigeto OKADA^{4,2}, Tamio OGUCHI^{1,7}

¹Osaka University, ²Kyoto University, ³Yamaguchi University, ⁴Kyushu University

F1-13-P12

A Computational Study on Diffusion of Divalent lons in Spinel-type Cathodes Materials for Mg Ion Batteries

Taruto ATSUMI¹, Kohei SHIMOKAWA⁴, Maho HARADA¹, Masanobu NAKAYAMA^{1,2,3}, Tetsu ICHITSUBO⁴ ¹Nagoya Institute of Technology, ²Kyoto University ESICB, ³MaDiS/CMi2, NIMS, ⁴Tohoku University

F1-13-P13

Electrochemical Properties and Local Structure of NaClO₄ Aqueous Electrolyte for Na-ion Batteries

<u>Maho YAMASHITA</u>¹, Ryo SAKAMOTO², Nobuko YOSHIMOTO¹, Kenta FUJII¹, Ayuko KITAJOU^{1,3}

¹Yamaguchi University, ²Kyushu University, ³ESICB, Kyoto University

F1-13-P14

One-Dimensional Nanoparticles as Anode Materials for LIBs

Mai Thanh NGUYEN¹, Tetsu YONEZAWA¹, Lyn Marie De JUAN-CORPUZ² ¹Hokkaido University, ²Chulalongkorn University

F1-13-P15

Predicting Transport Properties of Ionic Liquids by Using Molecular Dynamics Simulation with DFT-based Force Field

<u>Yoshiki ISHII</u>¹, Nobuyuki MATUBAYASI^{1,2} ¹Osaka University, ²Kyoto University

F1-13-P16

Effect of Thermal Annealing on Chemical Composition and Phase Transition of LiCoO₂ Powders

<u>Awadol KHEJONRAK</u>, Saroj RUJIRAWAT Suranaree University of Technology

F1-13-P17

Microscopic mechanism of diffusion processes in dilute electrolyte solutions for sodium-ion batteries

Junichi ONO¹, Chien-Pin CHOU¹, Hiromi NAKAI^{1,2,3} ¹Waseda Research Institute for Science and Engineering (WISE), Waseda University, ²Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, ³Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University

F1-13-P18

Microscopic Mechanism of SEI Layer Formation in Highly Concentrated Electrolytes Based on the Nonflammable Trimethyl Phosphate Solvent

<u>Amine BOUIBES</u>¹, Norio TAKENAKA^{1,2}, Soumen SAHA^{1,2}, Masataka NAGAOKA^{1,2}

¹Nagoya University, ²ESICB, Kyoto University

F1-13-P19

Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component?

Kyosuke DOI¹, <u>Yuki YAMADA^{1,2}</u>, Masaki OKOSHI^{2,3}, Junichi ONO⁴, Chien-Pin CHOU⁴, Hiromi NAKAI^{2,3,4}, Atsuo YAMADA^{1,2}

¹Department of Chemical System Engineering, The University of Tokyo, ²Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, ³Department of Chemistry and Biochemistry, Waseda University, ⁴Waseda Research Institute for Science and Engineering (WISE), Waseda University

F1-13-P20

N-Ethyl-*N*-propylpyrrolidinium Bis(fluorosulfonyl)amide Ionic Liquid Electrolytes with High Na Molar Fraction for Sodium Secondary Batteries

<u>Huan YANG</u>, Jingkwang HWANG, Kazuhiko MATSUMOTO, Rika HAGIWARA, Yushen WANG Kyoto University

F1-13-P21

A Sulfur-doped Black Phosphorus-TiO₂ Composite as High-Performance Anode Material for Sodium-Ion Storage

<u>Haimei LIU</u> Shanghai University of Electric Power

F1-13-P22

Battery Performance and Reaction Mechanism in Tincompounds as Negative Electrode: First-Principles Calculations

<u>Hiroki KOTAKA</u>¹, Hiroyoshi MOMIDA^{1,2}, Tamio OGUCHI^{1,2} ¹Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, ²Scientific and Industrial Research, Osaka University

F1-13-P23

HPO_3^{2-} as Building Unit for Sodium-Ion Battery Cathodes: $Na_2Fe(HPO_3)_2$

Zihan MA¹, Laura LANDER¹, Masashi OKUBO^{1,2}, Atsuo YAMADA^{1,2}

¹The University of Tokyo, ²Kyoto University, ESICB

F1-13-P24

Microscopic Structure of Electrode/electrolyte Interface Probed by Molecular Simulation and Sum Frequency Generation Spectroscopy

Lin WANG^{1,2}, Satoshi NIHONYANAGI^{3,4}, Ken-ichi INOUE¹, Kei NISHIKAWA⁵, Akihiro MORITA^{1,2}, Shen YE^{1,2}, Tahei TAHARA^{3,4}

¹Department of Chemistry, Graduate School of Science, Tohoku University, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, ³Molecular Spectroscopy Laboratory, RIKEN, ⁴Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, ⁵Rechargeable Battery Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Material Sciences

F1-13-P25

Aqueous Alkali Metal-Ion Battery with Naphthalene Tetracarboxylic Diimide-Based Metal-Organic Framework

Kosuke NAKAMOTO¹, Junwen BAI², Liwei ZHAO¹, Ryo SAKAMOTO², Masato ITO¹, Shigeto OKADA¹, Eiji YAMAMOTO³, Haruno MURAYAMA³, Makoto TOKUNAGA³ ¹Institute for Materials Chemistry and Engineering, Kyushu University, ²Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ³Department of Chemistry, Kyushu University

F1-13-P26

Molecular simulations for polymer binder of sodium ion batteries

Hitoshi WASHIZU^{1,2} ¹University of Hyogo, ²Kyoto University

F1-13-P27

Post Lithium-Ion Batteries; Theoretical Characterization of Phosphorous and Tin for Potassium-ion Anodes

Koichi YAMASHITA Kyoto University

F1-13-P28

Soft X-ray Li-K and Si-Li_{2,3} Emission from Lithium Silicides in Lithium-Ion Batteries Anode

<u>Andrey LYALIN</u>^{1,2}, Vladimir KUZNETSOV³, Akira NAKAYAMA⁴, Igor ABARENKOV³, Ilya TUPITSIN³, Igor GABIS³, Kohei UOSAKI², Tetsuya TAKETSUGU⁵

¹Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, ²National Institute for Materials Science (NIMS), ³Faculty of Physics, St. Petersburg State University, ⁴Department of Chemical System Engineering, University of Tokyo, ⁵Department of Chemistry, Hokkaido University

F1-13-P29

A Promising Layer Cathode Material for Sodium Ion Batteries: A First Principles Investigation

Huu Duc LUONG Osaka University

F1-13-P30

Structural and Electrochemical Properties of Nonflammable Solvent-Based Concentrated Electrolytes for Lithium-Ion Batteries

<u>Saki SAWAYAMA</u>, Hideyuki MIMURA, Masayuki MORITA, Kenta FUJII

Yamaguchi University

F1-13-P31

Electrochemical simulation based on the ESM-RISM formalism: a theory and its applications

Yasunobu ANDO^{1,2}, Minoru OTANI^{1,2}

¹CD-FMat, AIST, ²ESICB, Kyoto University

F1-13-P32

$\label{eq:microscope} \begin{array}{l} \mbox{Microscope} \mbox{ Mechanism of Li-ion Transport at Interfaces} \\ \mbox{between } \mbox{LiCoO}_2 \mbox{ Cathode and Sulfide Electrolyte in All-Solid-State Battery via DFT-CALYPSO Method} \end{array}$

<u>Bo GAO</u>¹, Randy JALEM¹, Yanming MA², Yoshitaka TATEYAMA¹

¹National Institute for Materials Science, ²Jilin University

F1-13-P33

Electrochemical Sodium-ion Intercalation Behavior into Graphite-Based Electrode

<u>Yasuyuki KONDO</u>¹, Yuto MIYAHARA², Kohei MIYAZAKI^{1,2,3}, Takeshi ABE^{1,2,3}

¹Graduate school of Global Environmental Studies, Kyoto University, ²Graduate school of Engineering, Kyoto University, ³Element Strategy Initiative for Catalysts & Batteries, Kyoto University

F1-13-P34

Conversion-Type Reaction Mechanism of MF_3 (M = Fe, Ti) Cathode for Li-Ion Battery: First-Principles Calculations

Tatsuya TAKAHASHI¹, Hiroyoshi MOMIDA^{1,2},

Tamio OGUCHI^{1,2}

¹The Institute of Scientific and Industrial Research, Osaka University, ²Elements Strategy Initiative for Catalysts and Batteries, Kyoto University

F1-13-P35

Comparative study of electrochemical behavior of micro-Sn and nano-Sn negative electrodes for Na-ion batteries

<u>Mika FUKUNISHI</u>^{1,2}, Tatsuo HORIBA^{1,2}, Kei KUBOTA^{1,2}, Shinichi KOMABA^{1,2}

¹Tokyo University of Science, ²ESICB, Kyoto University

F1-13-P36

Polyanionic Compounds as Positive Electrode Materials for K-Ion Batteries

<u>Tomooki HOSAKA</u>¹, Tomoaki SHIMAMURA¹, Kei KUBOTA^{1,2}, Shinichi KOMABA^{1,2}

¹Tokyo University of Science, ²ESICB, Kyoto University

F1-13-P37

Impact of metal-substitution in O3-type NaNi_{1/2}Mn_{1/2}O_2 for Na-Ion Battery

<u>Naoya FUJITANI</u>¹, Yusuke YODA¹, Kazutoshi KUROKI¹, Kei KUBOTA¹², Shinichi KOMABA¹²

¹Tokyo University of Science, ²ESICB, Kyoto University

F1-13-P38

- 183 -

Ca substitution effect on layered P3 and P2-type $Na_{x}CoO_{2}$

<u>Yuji ISHADO</u>¹, Hirona HASEGAWA², Shigeto OKADA^{3,4}, Minoru MIZUHATA², Hideshi MAKI², Masaki MATSUI^{2,4} ¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ²Department of Chemical Science and Engineering, Kobe University, ³Institute for Materials Chemistry and Engineering, Kyushu University, ⁴Elements Strategy Initiative for Catalyst and Batteries (ESICB), Kyoto University

F1-13-P39

First-Principles Study on Cation-Disordered Rock-Salt Type Cathode $Li_{2.4}M1_{0.8}M2_{0.8}O_4$ (M1, M2 = Ti, Cr, and Mn) for Li-lon Batteries

Motoyuki HAMAGUCHI¹, Hiroyoshi MOMIDA^{1,2}, Tamio OGUCHI^{1,2}

¹Institute of Scientific and Industrial Research, Osaka University, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University

F1-13-P40

Effects of Magnesium-Organo-Haloaluminate Complex in Magnesium Ion Battery Electrolytes: A Car-Parrinello Molecular Dynamics Study

Ashu CHOUDHARY, Keitaro SODEYAMA, Yoshitaka TATEYAMA NIMS

F1-13-P41

Lithium Diffusion Mechanism in Highly Concentrated Electrolytes via First-Principles Molecular Dynamics Sampling

<u>Yang SUN</u>¹, Keitaro SODEYAMA^{2,3}, Yuki YAMADA^{3,4}, Atsuo YAMADA^{3,4}, Yoshitaka TATEYAMA^{1,2}

¹Center for Green Research on Energy and Environmental Materials (GREEN) & International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), ²Center for Materials Research Information Integration (cMI2), Research and Services Division of Materials Data and Integrated System (MaDIS), NIMS, ³Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, ⁴Department of Chemical System Engineering, The University of Tokyo

F1-13-P42

Na⁺ Conducting Na₃SbS₄-Based Solid Electrolytes

<u>Akitoshi HAYASHI</u>, Fumika TSUJI, Naoki MASUZAWA, So YUBUCHI, Chie HOTEHAMA, Atsushi SAKUDA, Masahiro TATSUMISAGO Osaka Prefecture University

F1-13-P43

Improving intrinsic and surface of traditional graphene oxide as active material for supercapacitors electrodes

<u>Sarawudh NATHABUMROONG</u>¹, Saroj RUJIRAWAT¹, Rattikorn YIMNIRUN³, Adisorn TUANTRANONT² ¹Suranaree University of Technology, ²National Electronics and Computer Technology Center, ³Vidyasirimedhi Institute of Science and Technology

F1-13-P44

Phenolic Resin Derived Hard Carbon as Negative Electrode for High-Energy Sodium- and Potassium-Ion Batteries

<u>Azusa KAMIYAMA¹</u>, Kei KUBOTA¹, Shun FUJIMURA¹, Soshi SHIRAISHI², Hidehiko TSUKADA³, Shinishi KOMABA¹ ¹Tokyo University of Science, ²Gunma University, ³AION Co., Ltd.

F1-13-P45

Synthesis of molybdenum disulfide/ nitrogen-doped reduced graphene oxide nanocomposite for high performance supercapacitors

<u>Wipakorn RITTISUT</u> Suranaree University of Technology

F1-13-P46

$K_2[(VO)_2(HPO_4)_2(C_2O_4)]$ as 4 V Electrode Material for K-Ion Batteries

<u>Shahul Hameed ABDULRAHMAN¹, Akihiro KATOGI¹, Kei KUBOTA^{1,2}, Shinichi KOMABA^{1,2}</u>

¹Tokyo University of Science, ²ESICB, Kyoto University

F1-13-P47

Multiple Adsorption Modes and Decomposition Pathways of Carbonate Electrolyte Molecules at $LiNi_{0.5}Mn_{1.5}O_4$ Cathode Interfaces: Ab Initio Study

<u>Yoshitaka TATEYAMA</u>¹, Keisuke USHIROGATA³, Ganes SHUKRI^{1,2}, Yukihiro OKUNO³

¹National Institute for Materials Science, ²Kyoto University, ³FUJIFILM Corporation

— December 11, 2019 — Symposium F-2

Catalysis and Catalyst Materials for Energy and Environment

[Organizers]

Tetsuya SHISHIDO (Tokyo Metropolitan University) Wen-Yueh YU (National Taiwan University) Kevin C.-W. WU (National Taiwan University) Ning YAN (National University of Singapore) Katsutoshi NAGAOKA (Nagoya University) Yutaka AMAO (Osaka City University) Koji OHTA (Kyoto University)

December 11, 2019

Oral Session 1

Time 9:00-12:15 Room Work-5

Chairperson Tetsuya SHISHIDO

F2-11-K01 ► Keynote

9:05-9:45

Single-atom catalysts for energy and environmental applications

Ning YAN

National University of Singapore

F2-11-002

9:45-10:00

Charge transfer process of WO_x -modified Ti-HAp under UV illumination

Kana ISHISONE¹, Toshihiro ISOBE¹, Sachiko MATSUSHITA¹, Masato WAKAMURA², Mitsutake OSHIKIRI³,

Akira NAKAJIMA¹

¹Tokyo Institute of Technology, ²Fujitsu Laboratories Ltd., ³National Institute of Materials Science

F2-11-003

10:00-10:15

Vibration-driven reaction of CO₂ on Cu surfaces

Takumi IMABAYASHI¹, Jiamei QUAN², Taijun KOZARASHI¹, Tomoyasu MOGI¹, Takahiro KONDO^{2,3}, Junji NAKAMURA^{2,3} ¹Graduate School of Pure and Applied Sciences, University of Tsukuba, ²Faculty of Pure and Applied Sciences, University of Tsukuba, ³Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba

F2-11-004

Electronic Factors Affecting Surface Oxygen Vacancy Formation Energies on Metal Oxides

 $\frac{\text{Kenichi SHIMIZU}^{1,2}}{\text{Yoyo HINUMA}^4}, \text{Takashi TOYAO}^{1,2}, \text{Takashi KAMACHI}^{2,3},$

¹Institute for Catalysis, Hokkaido University, ²ESICB, Kyoto University, ³Department of Life, Environment and Materials Science, Fukuoka Institute of Technology, ⁴Center for Frontier Science, Chiba University

10:45-11:15

11:15-11:30

Metal-Organic Frameworks (MOFs)-Derived Nanomaterials for Catalytic Conversion of Lignocellulosic Biomass

or Catalytic Conversion of Lignocellulosic Biomass Kevin C.-W. WU

National Taiwan University

Invited

F2-11-006

F2-11-I05

Purification of automotive exhaust gas over Pd catalyst supported on Ca_2AIMnO_{5+\delta}

<u>Saburo HOSOKAWA</u>^{1,2}, Yudai OSHINO², Hiroyuki ASAKURA^{1,2}, Kentaro TERAMURA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Element Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, ²Department of Molecular Engineering, Graduate School of Engineering, Kyoto University

F2-11-007

11:30-11:45

11:45-12:00

12:00-12:15

Synergistic Effect between Isolated Electron-Rich Pt and Co for Automotive Exhaust Purification

Katsutoshi SATO^{1,3}, Ayano ITO², Hiroyuki TOMONAGA², Homare KANEMATSU², Yuichiro WADA², Hiroyuki ASAKURA¹, Saburo HOSOKAWA¹, Tsunehiro TANAKA¹, Katsutoshi NAGAOKA^{1,3}

¹Kyoto University, ²Oita University, ³Nagoya University

F2-11-008

Effect of Zeolite Topology on Cu Species in Cu-Zeolite Catalysts for NO Direct Decomposition

Yusuke OHATA¹, Takahiko MOTEKI^{1,2}, Masaru OGURA^{1,2} ¹Institute of Industrial Science, the University of Tokyo, ²Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University

F2-11-009

A possible mechanism for high turnover frequency CO-NO reactions over nanometric Rh overlayer catalysts

<u>Hiroshi YOSHIDA</u>^{1,2}, Yusuke KUZUHARA¹, Kenichi KOIZUMI^{2,3}, Masahiro EHARA^{2,4}, Mauro BOERO⁵, Akinori MATSUMOTO¹, Satoshi MISUMI¹, Junya OHYAMA^{1,2}, Masato MACHIDA^{1,2} ¹Kumamoto University, ²Kyoto University, ³Riken, ⁴Institute for Molecular Science, ⁵University of Strasbourg

- 185 -

	— December 1	11, 2019 ———
	Oral Ses	sion 2
Т	me 14:00-16:10	Room Work-5
Chairperso	n Kevin CW. WU	
F2-11-K10	►Keynote	14:00-14:40
Ping CHEN	synthesis under Mil J itute of Chemical Ph	
F2-11-I11	► Invited	14:40-15:10
on Polyoxo Sayaka UC	metalates	Porous Ionic Crystals Based
F2-11-012		15:10-15:25
		ayered Ruthenium for g the Activity via Selective
Tiannan Yl Masaaki K ¹Research of Technol	E ¹ , Masato SASASE ¹ ITANO ¹ , Takeshi INC Center for Element s logy, ² Hefei National It the Microscale, Un	NWANG ² , Yangfan LU ¹ , ¹ , Xiaojun WU ² , OSHITA ¹ , Hideo HOSONO ¹ Strategy, Tokyo Institute I Laboratory for Physical niversity of Science and

F2-11-013

15:25-15:40

Electride Materials for Advanced Catalytic Application Tian-Nan YE

Tokyo Institute of Technology

F2-11-014

15:40-15:55

Carbon Dioxide Hydrogenation to Formic Acid Driven by Nano-structured Metal Catalysts

Kohsuke MORI^{1,2,3}, Taiki SANO¹, Shinya MASUDA¹, Hiromi YAMASHITA^{1,3}

¹Osaka University, ²JST-PRESTO, ³ESICB, Kyoto University

F2-11-015

15:55-16:10

Pt-Fe surface alloy active for CO room-temperature oxidation

<u>Teng MA</u>¹, Yaqin WANG^{1,2} ¹Shenyang Agricultural University, ²Shenyang Ligong University

December 11, 2019

Oral Session 3

Time 16:30-18:40 Room Work-5

Chairperson Katsutoshi NAGAOKA

F2-11-K16 • Keynote

16:30-17:10

Transition Metal-Catalyzed Reduction of Molecular Dinitrogen into Ammonia under Ambient Conditions Yoshiaki NISHIBAYASHI

The University of Tokyo

F2-11-I17 ► Invited

17:10-17:40

17:40-17:55

Design of Heteropolytungstates for Water Oxidation Catalysis

Masahiro SADAKANE Hiroshima University

F2-11-018

Improvement of Hydrogen Oxidation Reaction in Alkaline Solutions by Modification of Pt/C Catalyst

<u>Junya OHYAMA</u>¹, Keiichi OKUBO³, Atsushi SATSUMA^{2,3} ¹Kumamoto University, ²Kyoto University ESICB, ³Nagoya University

F2-11-019

17:55-18:10

The OER/ORR Mechanism Including Redox Cycle of Perovskite Oxides for Secondary Metal-Air Batteries

Oyunbileg GALINDEV^{1,2}, <u>Tatsuya TAKEGUCHI</u>^{1,3}, Koichi UI¹, Enkhsaruul BYAMBAJAV²

¹Iwate University, ²National University of Mongolia, ³ESICB

F2-11-020

18:10-18:25

Interaction of O_2 , CO_2 , and H_2O with Perovskite Surfaces. Insights from the Theory.

<u>Aleksandar STAYKOV</u>¹, Tatsumi ISHIHARA¹, John KILNER² ¹Kyushu University, ²Imperial College London

F2-11-021

18:25-18:40

Mechanistic Investigation in Reverse Water-Gas Shift Reaction over Platinum Catalysts Supported on Various Metal Oxides

<u>Akira YAMAMOTO</u>¹, Yuqiang DAI¹, Taiki WATANABE¹, Hisao YOSHIDA¹²

¹Graduate School of Human and Environmental Studies, Kyoto University, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University

Symposium F

Poster Session

Time 12:15-14:00 Room Trade-0

F2-11-P01

Catalytic Combustion of Diesel Soot over Fe and Agdoped Manganese Oxide Catalyst

<u>Yasutaka KUWAHARA</u>^{1,2}, Akihiro FUJIBAYASHI¹, Genki KATO¹, Kohsuke MORI^{1,2,3}, Hiromi YAMASHITA^{1,2} ¹Osaka University, ²Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), ³JST, PRESTO

F2-11-P02

Shape Controlled CoO_x/CeO_2 Catalyst in Diesel Soot Combustion

 $\frac{\text{Kohsuke MORI}^1, \text{Hirotaka JIDA}^1, \text{Yasutaka KUWAHARA}^{1,2}, \\ \text{Hiromi YAMASHITA}^{1,2}$

¹Osaka University, ²ESICB Kyoto University, ³JST-PRESTO

F2-11-P03

Ultrathin Oxide Films as Potential Catalysts for NO-CO Elimination: A DFT Study

<u>Hiroaki KOGA</u>¹, Kohei TADA², Akihide HAYASHI³, Yoshinori ATO³, Mitsutaka OKUMURA^{1,3}

¹ESICB, Kyoto University, ²Research Institute of Electrochemical Energy, AIST, ³Department of Chemistry, Osaka University

F2-11-P04

$Pd/CoAl_2O_4/Al_2O_3$ Prepared by Galvanic Deposition – Promotion of Reduction-Oxidation Steps of Pd Particle during Methane Combustion

<u>Atsushi SATSUMA</u>^{1,2}, Yuji MAHARA¹, Takumi TOJO¹, Kazumasa MURATA¹, Junya OHYAMA^{1,23}

¹Nagoya University, ²ESICB Kyoto University, ³Kumamoto University

F2-11-P05

Methanolysis of ammonia borane over supported Pd-Au alloy catalysts

<u>Tetsuya SHISHIDO</u>^{1,2,3,4}, Mitsuhiro TOMINAGA¹, Hiroshi MIURA^{1,2,4}

¹Department of Applied Chemistry for Environment, Graduate School of Engineering, Tokyo Metropolitan University, ²Research Center for Hydrogen Energybased Society, Tokyo Metropolitan University, ³Research Center for Gold Chemistry, Tokyo Metropolitan University, ⁴Elements Strategy Initiative for Catalysts & Batteries, Kyoto University

F2-11-P06

Preparation of ZrO₂/C cathode catalysts as an alternative of Pt/C for polymer electrolyte fuel cells

Jun KUBOTA^{1,2}, Masako MATSUYAMA¹

¹Fukuoka University, ²ESICB, Kyoto University

F2-11-P07

Automated Structural and Reaction Pathway Searches Toward Theoretical Cluster Catalysis

Takeshi IWASA^{1,2,3}, Takaaki SATO⁴, Makito TAKAGI⁴, Min GAO⁵, Yusuke KONDO³, Rina TAKAHARA⁴, Hirono MOHRI⁴, Andrey LYALIN², Masato KOBAYASHI^{1,2,3,6}, Ken-ichi SHIMIZU^{3,5}, Satoshi MAEDA^{1,2,3}, Tetsuya TAKETSUGU^{1,2,3,4}

¹Department of Chemistry, Faculty of Science, Hokkaido University, ²WPI-ICReDD, Hokkaido University, ³ESICB, Kyoto University, ⁴Graduate School of Chemical Sciences and Engineering, Hokkaido University, ⁵Institute for Catalysis, Hokkaido University, ⁶JST-PRESTO

F2-11-P08

Adsorption and Activation of Methane on the (110) Surface of IrO₂

<u>Yuta TSUJI</u>, Kazunari YOSHIZAWA Kyushu University

F2-11-P09

Construction of Surface Model Calculation Database and Its Usage for Catalytic Activity Prediction: A Case Study for Methane Steam Reforming

Masato KOBAYASHI^{1,2,3}, Haruka ONODA⁴,

Tetsuya TAKETSUGU^{1,2,3}

¹Faculty of Science, Hokkaido University, ²WPI-ICReDD, Hokkaido University, ³ESICB, Kyoto University, ⁴Graduate School of Chemical Sciences and Engineering, Hokkaido University

F2-11-P10

Preparation of Ru/Complex-rare-earth Oxide for Efficient Ammonia Synthesis

<u>Yuta OGURA</u>¹, Shin-ichiro MIYAHARA¹, Takahiro ASAI², Katsutoshi SATO³, Katsutoshi NAGAOKA¹ ¹Nagoya University, ²Oita University, ³Kyoto University

F2-11-P11

Effect of Oxygen Non-Stoichiometry of $LaNiO_{{}_{3\!-\!\delta}}$ on Oxygen Reduction and Evolution Reaction Activities

<u>Hiroyuki TANAKA</u>¹, Hiroyuki ASAKURA^{1,2}, Saburo HOSOKAWA^{1,2}, Kentaro TERAMURA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, ²Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University

F2-11-P12

Three-way catalytic reaction using FeNbO₄ as catalyst support

<u>Kenya ONISHI</u>¹, Saburo HOSOKAWA^{1,2}, Hiroyuki ASAKURA^{1,2}, Kentaro TERAMURA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, ²Element Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University

F2-11-P13

Particle size effect on CO oxidation over Pd/Al_2O_3 with different alumina crystalline phase

Kazumasa MURATA¹, Eleen ELEEDA¹, Junya OHYAMA^{2,3}, Yuta YAMAMOTO⁴, Shigeo ARAI⁴, Atsushi SATSUMA^{1,3} ¹Graduate School of Engineering, Nagoya University, ²Faculty of Advanced Science and Technology, Kumamoto University, ³Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, ⁴Institute of Materials and Systems for Sustainability, Nagoya University

F2-11-P14

Development of Pd Catalyst Supported on Sr-Ti Mixed Oxide for Purifying Automotive Exhaust Gases

<u>Chikara WATANABE¹</u>, Saburo HOSOKAWA^{1,2}, Hiroyuki ASAKURA^{1,2}, Kentaro TERAMURA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, ²Element Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University

F2-11-P15

Activity of Silica-Coated Pt Cathode Catalysts with Low Ionomer Loading for PEFCs under Low Humidity Conditions

<u>Masaki GOTO</u>, Sakae TAKENAKA Doshisha University

F2-11-P16

Improvement of the Durability of Pt Cathode Catalysts for PEFCs using Titanium Oxide Nanosheets

Sakae TAKENAKA^{1,2}, <u>Tomohiro SUZUKI</u>¹ ¹Doshisha University, ²Kyoto University

F2-11-P17

DFT Calculations Analysis of Catalytic Activity Modifications with Electric Field

<u>Katsuhiro WAKAMATSU</u>, Teppei OGURA Kwansei Gakuin University

F2-11-P18

Origin of $(NO)_3$ Formation on Cu(111) from Density Functional Theory Calculations.

<u>Yoshitada MORIKAWA</u>^{1,3}, Thanh Ngoc PHAM^{1,2}, Kouji INAGAKI^{1,3}, Do Ngoc SON², Ikutaro HAMADA^{1,3}, Yuji HAMAMOTO^{1,3}

¹Osaka University, ²Ho Chi Minh City University of Technology, VNU-HCM, ³ESICB, Kyoto University

F2-11-P19

Why Does Not Only the Rh_{13}^{+} Cluster Reduce Nitrogen Oxides?

Naoki HARUTA^{1,2,3}, Sho FUKUSHIMA^{1,2}, Wataru OTA^{1,2}, Tohru SATO^{1,2,3}

¹Fukui Institute for Fundamental Chemistry, Kyoto University, Japan, ²Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan, ³Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Japan

F2-11-P20

Density-Functional Tight-Binding Study on Oxygen Vacancy Diffusion in Ceria Systems

Aditya Wibawa SAKTI^{1,2}, Chien-Pin CHOU², Hiromi NAKAI^{1,2,3} ¹Element Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto, 615-8520, Japan, ²WISE Waseda University, Tokyo, 169-8555, Japan, ³Department of Chemistry and Biochemistry, Waseda University, Tokyo, 169-8555, Japan

F2-11-P21

Gold and Gold-Palladium Nanoflower Catalysts with High Catalytic Activity for Alcohol Oxidation

<u>Yoshiro IMURA</u>¹, Ryota AKIYAMA¹, Masami TANAKA¹, Haruna SAITO¹, Clara MORITA-IMURA², Takeshi KAWAI¹ ¹Tokyo University of Science, ²Ochanomizu University

F2-11-P22

Local structure and three-way catalysis of thermally aged $\mbox{Cu}/\mbox{Al}_2\mbox{O}_3$

Taiki HIRAKAWA¹, Hiroshi YOSHIDA^{2,3}, Yushi SHIMOKAWA¹, Wakana TOKUZUMI¹, Junya OHYAMA^{2,3}, Magata MAQUUDA^{2,3}

Masato MACHIDA^{2,3}

¹Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, ²Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, ³Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University

F2-11-P23

In situ Reflectance Spectroscopy for the Real-Time Observation of Redox Dynamics of Pd Supported on CeO_2 -ZrO₂

<u>Ayumi FUJIWARA¹</u>, Yuki UCHIDA¹, Riichiro KAKEI¹, Hiroshi YOSHIDA^{2,3}, Junya OHYAMA^{2,3}, Masato MACHIDA^{2,3} ¹Graduate School of Science and Technology, Kumamoto University, ²Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, ³Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University

F2-11-P24

Enhanced Photocatalytic Activity of Perovskite NaNbO₃ by Oxygen Vacancies Engineering

<u>Bian YANG</u>, Jihong BIAN, Lei WANG, Jianwei WANG, Yaping DU, Zhiguang WANG, Chao WU, Yaodong YANG Xi'an Jiaotong University

F2-11-P25

Redox behavior and three-way catalytic activity of Rh-Fe/Al_2O_3 $\,$

<u>Kyoko FUJITA</u>¹, Hiroyuki ASAKURA^{1,2}, Saburo HOSOKAWA^{1,2}, Kentaro TERAMURA^{1,2}, Tsunehiro TANAKA^{1,2} ¹Kyoto University, ²ESICB, Kyoto University

F2-11-P26

Effect of Zn species in Ag-loaded Zn-modified $ZnTa_2O_6$ for Photocatalytic conversion of CO_2 by H_2O

<u>Shuying WANG</u>¹, Kentaro TERAMURA^{1,2}, Saburo HOSOKAWA^{1,2}, Hiroyuki ASAKURA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Kyoto University, ²Element Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University

F2-11-P27

Electron-rich Gold Clusters Stabilized by Polyvinylpyridines as Robust and Active Oxidation Catalysts

<u>Atsushi MATSUO</u>¹, Shingo HASEGAWA¹, Shinjiro TAKANO¹, Tatsuya TSUKUDA^{1,2}

¹Department of Chemistry, The University of Tokyo, ²Elements Strategy Initiative for Catalysis and Batteries (ESICB), Kyoto University

F2-11-P28

Theoretical Study on the Electronic Origin and Reaction Mechanism of Catalytic Nitric Oxide Reduction with Metal Clusters

<u>Ryoichi FUKUDA</u>¹, Kaho NAKATANI¹, Nozomi TAKAGI¹, Masahiro EHARA², Shigeyoshi SAKAKI¹ ¹Kyoto University, ²Institute for Molecular Science

F2-11-P29

Ammonia Synthesis Mechanism using Ru-loaded Hydride Catalyst from First principles

<u>Takuya NAKAO</u>, Tomofumi TADA, Hideo HOSONO Materials Research Center for Element Strategy, Tokyo Institute of Technology

F2-11-P30

Improving Catalytic Performance and Stability of Polymer-Stabilized Gold Clusters

Tatsuya TSUKUDA^{1,2}, Shingo HASEGAWA¹, Atsushi MATSUO¹, Koto HIRANO¹, Shinjiro TAKANO¹

¹The University of Tokyo, ²Kyoto University

F2-11-P31

Synthesis of metal-metal oxide hybrid clusters and their catalytic properties

Jun HIRAYAMA^{1,2}, Taku KOJIMA², Tomoki MATSUYAMA², Kanako SHIBATA², Mio TSUKADA², Hiroki MIURA^{1,3}, Tetsuya SHISHIDO^{1,3}, Hikaru TAKAYA⁴, Seiji YAMAZOE^{1,2,5} ¹Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, ²Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, ³Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, ⁴Institute for Chemical Research, Kyoto University, ⁵Core Research for Evolutional Science and Technology, Japan Science and Technology Agency

F2-11-P32

Reaction Behavior of NO Molecule on 4d Metal Clusters

M₁₃ and M₅₅ (M = Ru, Rh, Pd, and Ag); Theoretical Study <u>Nozomi TAKAGI</u>¹, Ryoichi FUKUDA¹, Masahiro EHARA^{1,2}, Shigeyoshi SAKAKI^{1,3}

¹Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, ²Institute for Molecular Science, ³Fukui Institute for Fundamental Chemistry, Kyoto University

F2-11-P33

Design of Intermetallic Electrides for Catalytic Ammonia Synthesis

<u>Jiazhen WU</u>¹, Jiang LI¹, Masaaki KITANO¹,

Takeshi INOSHITA^{1,2}, Hideo HOSONO^{1,3} ¹Materials Research Center for Element Strategy, Tokyo Institute of Technology, ²National Institute for Materials Science, ³Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology

F2-11-P34

Plasmonic Molybdenum Oxide Microspheres for Complete Nitrogen Photofixation

<u>Haoyuan BAI</u>, Jianhua YANG, Jianfang WANG The Chinese University of Hong Kong

F2-11-P35

Propene Oxidation by M_{55} Cluster (M= Pd or Rh): Theoretical Study of Reaction Mechanism and Difference(s) between Pd and Rh

<u>Bo ZHU</u>, Masahiro EHARA, Shigeyoshi SAKAKI Kyoto University

F2-11-P36

Effect of size and morphology of Ag nanoparticles modified on NaTaO₃ for photoreduction of CO₂ by H₂O

<u>Xu XUANWEN¹</u>, Kentaro TERAMURA^{1,2}, Hiroyuki ASAKURA^{1,2}, Saburo HOSOKAWA^{1,2}, Tsunehiro TANAKA^{1,2}

¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, ²ESICB, Kyoto University

F2-11-P37

CO Oxidation and NO Reduction on Pd-loaded $Sr_3Fe_2O_{7-\delta}$ Catalyst: A Theoretical Approach

<u>Kuduva R. VIGNESH</u>^{1,2}, Archana VELLOTH^{1,2}, Ryoichi FUKUDA^{2,3}, Saburo HOSOKAWA^{2,3}, Tsunehiro TANAKA^{2,3}, Masahiro EHARA^{1,2} ¹Institute for Molecular Science, ²ESICB, Kyoto University, ³Department of Molecular Engineering, Kyoto University

F2-11-P38

Theoretical Investigation on Structures and Bond Activation on Isolated and Supported Pt-Co Bimetallic Nanoclusters

Masahiro EHARA^{1,2}, Archana VELLOTH^{1,2}, Tao YANG^{1,2}, Ryoichi FUKUDA^{2,3}

¹Institute for Molecular Science, ²ESICB, Kyoto University, ³Department of Molecular Engineering, Kyoto University

F2-11-P39

Ammonia decomposition reaction on the Ni supported various metal imides

<u>Kiya OGASAWARA</u>¹, Kazuhisa KISHIDA¹, Masaaki KITANO^{1,2}, Hideo HOSONO¹

¹Materials and Structures Laboratory, Tokyo Institute of Technology, ²Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)

F2-11-P40

Importance of Pd Site in Hydrosilylation of Internal Alkynes by Palladium-Gold Alloy Catalyst

Pei ZHAO¹, Tumpa SADHUKHAN^{1,2}, Anchalee JUNKAEW³, Hiroki MIURA^{2,4,5}, Tetsuya SHISHIDO^{2,4,5}, Masahiro EHARA^{1,2} ¹Institute for Molecular Science, Research Center for Computational Science, ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, ³National Nanotechnology Center (NANOTEC), Thailand Science Park, ⁴Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, ⁵Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University

F2-11-P41

Redox behavior of Ni-Cu bimetallic alloy catalysts for automobile exhaust purification

<u>Hiroyuki ASAKURA</u>^{1,2}, Saburo HOSOKAWA^{1,2}, Kentaro TERAMURA^{1,2}, Nozomi TAKAGI², Shigeyoshi SAKAKI^{2,3}, Tsunehiro TANAKA^{1,2} ¹Kyoto University, ²ESICB, Kyoto University, ³Fukui Institute for Fundamental Chemistry, Kyoto University

F2-11-P42

The change of electronic structure at the interface between Pt nanoparticles and the carbon support by the ion irradiation

<u>Hiroyuki OKAZAKI</u>¹, Akira IDESAKI¹, Hiroshi KOSHIKAWA¹, Daiju MATSUMURA², Syunya YAMAMOTO¹, Yusunari MAEKAWA¹, Tetsuya YAMAKI¹

¹National Institutes for Quantum and Radiological Science and Technology, ²Japan Atomic Energy Agency

F2-11-P43

Mechanistic Analysis of Oxygen Vacancy Formation and Ionic Transport in $Sr_3Fe_2O_{7\cdot\delta}$

Tadashi OTA, Hidetoshi KIZAKI, <u>Yoshitada MORIKAWA</u> Department of Precision Science and Technology, Graduate School of Engineering, Osaka University

December 11–13, 2019 –

Symposium F-3

Advancements in Thermoelectric Materials and Applications

Organizers

Takao MORI (National Institute for Materials Science) Michihiro OHTA (National Institute of Advanced Industrial Science and Technology) Lidong CHEN (Shanghai Institute of Ceramics, Chinese Academy of Sciences) Franck GASCOIN (CRISMAT) Yuri GRIN (Max Planck Institute for Chemical Physics of Solids) Yuzuru MIYAZAKI (Tohoku University) Michitaka OHTAKI (Kyushu University) Jong-Soo RHYEE (Kyung Hee University) Jeff SNYDER (Northwestern University) Tsunehiro TAKEUCHI (Toyota Technological Institute) Takahiro YAMAMOTO (Tokyo University of Science)

- December 11, 2019 -

Oral Session 1

Time 9:00-12:05 Room Work-2

Chairpersons Takao MORI, Johannes DE BOOR, Yaniv GELBSTEIN

F3-11-K01 ► Keynote

The Effect of Microstructure in Understanding the

Electronic Properties of Complex Materials

G. Jeffrey SNYDER Northwestern

F3-11-I02 ► Invited

9.25-9.45

9:00-9:25

Phonon dispersion and scattering in thermoelectrics Yanzhong PEI Tongji University

F3-11-I03 ► Invited

9:45-10:05

New concept to effectively increase ZT and development of high-performance Si- Ge based thermoelectric materials

Tsunehiro TAKEUCHI Toyota Technological Institute

F3-11-I04 Invited

10:05-10:25

10:25-10:45

Topological and Anderson transition in thermoelectricity Jong-Soo RHYEE

Kyung Hee University

F3-11-I05 ► Invited

Effect of Phonon Drag on Seebeck Coefficient Based on Linear Response Theory: Application to FeSb₂

Masao OGATA¹, Hiroyasu MATSUURA¹, Hideaki MAEBASHI¹, Hidetoshi FUKUYAMA²

¹Department of Physics, University of Tokyo, ²Science University of Tokyo

F3-11-I06 Invited

10:45-11:05

11:05-11:20

Optical Properties of Thermoelectric Materials

Peng JIANG

Dalian Institute of Chemical Physics, Chinese Academy of Sciences

F3-11-007

Enhanced thermoelectric properties of Si-Ge by tuning boron concentration and dispersion of Au nanoparticle in Si-Ge matrix synthesized by high-pressure and lowtemperature sintering process

Omprakash MUTHUSAMY

Toyota Technological Institute

F3-11-008

11:20-11:35

11:35-11:50

Charge density wave and thermoelectric properties in Te-deficient InTe₁₋₆ compounds

Song Yi BACK¹, Young-Kwang KIM², Hyunyong CHO¹, Jong-Soo RHYEE¹

¹Kyung Hee University, ²Pohang University of Science and Technology (POSTECH)

F3-11-009

Locally Distorted Structures with Multiple Anions Realize Ultralow Lattice Thermal Conductivity

Naoki SATO¹, Norihide KURODA², Yukari KATSURA³, Ikuzo KANAZAWA², Kaoru KIMURA³, Takao MORI¹ ¹WPI-MANA and CFSN, National Institute for Materials Science, ²Tokyo Gakugei University, ³The University of Tokyo

F3-11-010

11:50-12:05

(Micro)Structure - Thermoelectric Properties Relationships In Mesostructured MnSi₁₇₄ and β -FeSi₂ Prepared By Magnesioreduction

Sylvain LE TONQUESSE¹, Valérie DEMANGE¹, Carmelo PRESTIPINO¹, Vincent DORCET¹, Loïc JOANNY¹, Quansheng GUO², David BERTHEBAUD², Takao MORI³, Mathieu PASTUREL¹

¹Univ. Rennes, ²CNRS - Saint-Gobain - NIMS, LINK, ³National Institute for Materials Science (NIMS)

December 11, 2019

Oral Session 2

Time 14:00-16:00 Room Work-2

Chairpersons G. Jeffrey SNYDER, Tsunehiro TAKEUCHI

F3-11-K11 ► Keynote

14:00-14:25

Challenges Facing the Thermoelectrics Community Zhifeng REN

University of Houston

F3-11-l12 ►Invited

14:25-14:45

Towards Magnesium-Silicide Based Thermoelectric Generators: Material Optimization, Contact Development and Prototypes

Johannes DE BOOR German Aerospace Center (DLR)

14:45-15:00

Silicides for industrial heat waste recovery

David BERTHEBAUD¹, Quansheng GUO^{1,2}, Yuichi MICHIUE², Franck GASCOIN³, Sylvain LE TONQUESSE⁴, Mathieu PASTUREL⁴, Takao MORI²

¹CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, Tsukuba 305-0044, Japan, ²WPI-MANA & CFSN, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan, ³Laboratoire CRISMAT UMR 6508 CNRS ENSICAEN, France, ⁴Univ Rennes, CNRS, ISCR-UMR6226, F-35000, **Rennes France**

F3-11-014

F3-11-013

15:00-15:15

Refinement of the Calculated Power Generation Characteristics of a Unileg-type Mg₂Si Thermoelectric Module Using Thermal-electric Analysis

Yuki SHIOJIMA, Takeaki HARADA, Kenki TANI, Tatsuya YAMASHITA, Daishi SHIOJIRI, Tsutomu IIDA Tokyo University of Science

F3-11-015

15:15-15:30

Conversion Efficiency Of Colusite (Cu₂₆Nb₂Ge₆S₃₂)-Based Thermoelectric Element With Au-Based Diffusion Barrier

Raju CHETTY¹, Yuta KIKUCHI¹, Yohan BOUYRIE¹, Priyanka JOOD¹, Atsushi YAMAMOTO¹, Koichiro SUEKUNI², Michihiro OHTA

¹National Institute of Advanced Industrial Science and Technology, ²Kyushu University

F3-11-016

15:30-15:45

Measurement of thermophysical property distribution by pulsed light heating thermoreflectance method with high spatial resolution

Tetsuva BABA, Naoki SATO, Takahiro BABA, Takao MORI National Institute of Materials Science

F3-11-017

15:45-16:00

Perspectives of ultra-high temperature thermoelectric materials and applications

Takao MORI

National Institute for Materials Science (NIMS)

December 11, 2019

Oral Session 3

Time 16:30-18:30 Room Work-2

Chairpersons Zhifeng REN, Jong-Soo RHYEE

F3-11-I18 Invited

16:30-16:50

Chalcogenides based thermoelectric materials for power generation

Yaniv GELBSTEIN

Ben-Gurion University

F3-11-l19 ►Invited

16:50-17:10

17:10-17:30

17:30-17:45

Thermoelectric Modules for Near Room-temperature Uses Based on N-type $Mg_3Sb_{1.5}Bi_{0.5}$ Materials and P-type Bi_{0.48}Sb_{1.52}Te₃

Huaizhou ZHAO

Institute of Physics, Chinese Academy of Sciences

F3-11-I20 ► Invited

Investigation on the stability of liquid-like thermoelectric materials and modules

Pengfei QIU¹, Xun SHI¹, Lidong CHEN¹, Jeffrey SNYDER² ¹Shanghai Institute of Ceramics, Chinese Academy of Sciences, ²Department of Materials Science and Engineering, Northwestern University

F3-11-021

Development Of High-Efficiency Segmented Thermoelectric Systems For Space Applications

Kathleen LEE¹, Jean-Pierre FLEURIAL¹, Sabah BUX¹, Fivos DRYMIOTIS¹, Kurt STAR¹, Ike CHI¹, Kevin YU¹ Obed VILLALPANDO¹, Billy LI¹, Kevin SMITH¹, Dean CHEIKH¹, David UHL¹, Chen-Kuo HUANG¹, Michell ARANDA¹, David NEFF¹, Sutinee SUJITTOSAKUL¹, Emmanuelle DESPAGNET-AYOUB¹, Jong-Ah PAIK¹, Samad FIRDOSY¹, Knut OXNEVUT¹, Vilupanur RAVI^{1,2} Frances HURWITZ³, Dongming ZHU³, Haiquan GUO³, Gustavo COSTA³, Kang LEE³, Jessica CASHMAN³, Zi Kui LIU⁴, Jorge PAZ SOLDAN PALMA⁴, Yi WANG⁴, XiaoYu CHONG⁴ ¹NASA Jet Propulsion Laboratory, ²California State Polytechnic University Pomona, ³NASA Glenn Research Center, ⁴Pennsylvania State University

F3-11-022

17:45-18:00

Development of Thermal Diodes using Unusual Thermoelectric Properties of Ag_2Ch (*Ch* = S, Se, Te)

Keisuke HIRATA, Takuya MATSUNAGA, Masaharu MATSUNAMI, Tsunehiro TAKEUCHI Toyota Technological Institute

F3-11-023

Examination of Fabrication Condition of Thermoelectric **Conversion Devices Using Porous Thermoelectric** Materials

Yasutaka HASHIMOTO¹, Makoto SASAKI¹, Yohei HIYAMA¹, Takatoshi NAGANO², Teruyuki IKEDA²

¹Graduate School of Science and Engineering, Ibaraki University, ²Department of Materials Science and Engineering, College of Engineering, Ibaraki University

F3-11-024

Development of a New Heat Flow Switching Device

Takuya MATSUNAGA, Keisuke HIRATA, Masaharu MATSUNAMI, Tsunehiro TAKEUCHI Toyota Technological Institute

18:00-18:15

18:15-18:30

	December 12, 2010	
	December 12, 2019 Oral Session 4	
T :		
	me 9:00-12:05 Room s Franck GASCOIN, Dario N Prashun GORAI	Trade-1 JARDUCCI,
F3-12-K01	►Keynote	9:00-9:25
<u>Yuri GRIN</u>	onding and thermoelectric	
F3-12-I02	▶ Invited	9:25-9:45
How Far Ca	n Chemists Go Toward Hi , Li-Ming WU mal University	
F3-12-I03	▶ Invited	9:45-10:05
the Perform Jan-Willem Srinivas PC Kamil DON ¹ Heriot-Wa	use of Alloying and Interstinance of TiNiSn-based Hal <u>BOS</u> ¹ , Sonia BARCZAK ¹ , Rol DPURI ¹ , John HALPIN ² , Dona IOSUD ³ , Keith REFSON ³ tt University, ² University of G Iniversity London	f-Heuslers bert QUINN ¹ , ld MACLAREN ² ,
F3-12-I04	► Invited	10:05-10:25
performance Ernst BAUE Xingqiu CH ¹ TU Wien, ²	o film: largely enhanced the e in full Heusler systems ER ¹ , Bernhard HINTERLEITNI IEN ³ Institute for Materials Scient aboratory for Materials Scient	ER ¹ , Takao MORI ² , ce, NIMS, ³ Shenyang
F3-12-005		10:25-10:40
structures, Heusler-typ	tion effects on the crystal and thermoelectric proper e VFeSb compounds Kei HAYASHI, Yuzuru MIYA2 iversity	ties of half-
F3-12-I06	► Invited	10:40-11:00
Performanc		electric
Sinica, ² Cei	f Atomic and Molecular Scie hter for Condensed Matter S versity, ³ Taiwan Internationa	ciences, National
F3-12-007		11:00-11:15
Power facto Sm _v (Fe _v Ni ₁₋	or and wettability of the fill ,) ₄ Sb ₁₂	ed skutterudite

<u>Giovanna LATRONICO</u> Shibaura Institute of Technology

F3-12-008

11:15-11:30

Effect of non-equilibrium processing on the synthesis and thermoelectric properties of skutterudites and half Heusler compounds

Alberto CASTELLERO¹, Francesco AVERSANO¹, Stefano BOLDRINI², Alberto FERRARIO², Carlo FANCIULLI³, Marcello BARICCO¹ ¹University of Turin, ²CNR – ICMATE, Padova, ³CNR –

ICMATE, Lecco

F3-12-I09 Invited

11:30-11:50

11:50-12:05

Exceptional Thermoelectric Performance of Polycrystalline SnSe Materials

In CHUNG^{1,2}

¹Seoul National University, ²Nanoparticle Research Center, Institute for Basic Science

F3-12-010

Study on thermoelectric properties of co-evaporated Sn-Se films with different phase formations

<u>Guojian LI</u>, Baohai JIA, Shiying LIU, Shan LIU, Yaoyao ZHOU, Qiang WANG Northeastern University

- December 12, 2019

Oral Session 5

Time 14:00-16:10 Room Work-2

Chairpersons Yuri GRIN, In CHUNG

F3-12-I11 Invited

```
14:00-14:20
```

14.20-14.40

Ionic Pnictides for High Temperature Applications <u>Franck GASCOIN</u> CRISMAT laboratory, CNRS, ENSICAEN

F3-12-I12 Invited

Beyond the Known: Computational Discovery of New *n*-type Zintl Thermoelectric Materials Prashun GORAI

Colorado School of Mines

F3-12-I13 ► Invited 14:40-15:00

Thermoelectric Properties of Ternary Thallium Tellurides <u>Holger KLEINKE</u> University of Waterloo

F3-12-I14 ► Invited

15:00-15:20

Silicon Reloaded: Novel Perspectives of Si as a Thermoelectric Material Dario NARDUCCI University of Milano Bicocca Symposium F

Ag₂Se and PbTe thermoelectrics- High performance materials and modules for room temperature to midtemperature applications.

Privanka JOOD¹, Atsushi YAMAMOTO¹, G. Jeffrey SNYDER², Mercouri G. KANATZIDIS^{3,4}, Michihiro OHTA¹

¹Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan, ²Department of Materials Science & Engineering, Northwestern University, Evanston, 60208, USA, ³Department of Chemistry, Northwestern University, Evanston, 60208, USA, ⁴Materials Science Division, Argonne National Laboratory, Argonne, 60439, USA

F3-12-016

15:40-15:55

Enhancing the transport properties of Bi₂Te_{3-x}Se_x alloys for thermoelectric power generation applications via melt-spinning

Omer MEROZ

Ben Gurion University of the Negev

F3-12-017

15:55-16:10

Enhanced thermoelectric performance of p-type Bi₂Te₃based alloys reprocessed from commercial ingot by nano SiC dispersion

Bowen CAI Tsinghua University

December 13, 2019

Oral Session 7

Time 9:00-12:05 Room Work-2

Chairpersons Koji MIYAZAKI, Kedar HIPPALGAONKAR, Naohito TSUJII

F3-13-K01 ▶Keynote

9:00-9:25

Synergistic control of electrical and thermal transport property in thermoelectric nanocomposites

Jing-Feng LI Tsinghua University

F3-13-I02 ► Invited

9:25-9:45

Link the relationship between structure and thermoelectric property through atomic observation

Zhigang CHEN University of Southern Queensland

F3-13-I03 Invited

9:45-10:05

A high-throughput approach to thermoelectric materials with enhanced properties in complex material systems

Teruyuki IKEDA

Ibaraki University

F3-13-I04 Invited

F3-13-I05

10:05-10:25

Defects And Their Influence On The Thermoelectric Properties Of Materials: An Ab Initio Study

Philippe JUND, Alexandre BERCHE University of Montpellier

► Invited

10:25-10:45

First-Principles Thermoelectric Calculations of Magnetic Semiconductors

Hirokazu TAKAKI^{1,2}, Kazuaki KOBAYASHI²,

Masato SHIMONO², Nobuhiko KOBAYASHI¹, Kenji HIROSE³, Naohito TSUJII², Takao MORI²

¹University of Tsukuba, ²National Institute for Materials Science, ³NEC corporation

F3-13-I06 ► Invited

10:45-11:05

First Principles Simulations of Thermoelectric Transport in n-type PbTe

Ivana SAVIC¹, Jiang CAO^{1,2}, Jose D. QUERALES-FLORES¹, Stephen FAHY^{1,3}

¹Tyndall National Institute, Cork, T12 R5CP, Ireland, ²Department of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China, ³Department of Physics, University College Cork, Cork, T12 K8AF, Ireland

F3-13-007

11:05-11:20

Development of high-performance thermoelectric materials of rock-salt IV-VI compounds guided by largescale experimental data and first-principle calculation Takushi KODANI¹

¹The University of Tokyo, ²National Institute for Materials Science (NIMS)

F3-13-008

11:20-11:35

11:35-11:50

11:50-12:05

First-Principles Study of Thermoelectric Properties of Iodide Perovskite

Satoshi IIKUBO, Kumiko YAMAMOTO, Shoya KAWANO, Masayuki MORIMOTO, Koji MIYAZAKI Kyushu Institute of Technology

F3-13-009

Discovery of Colossal Seebeck Effect in Metallic Cu₂Se

Dogyun BYEON¹, Robert SOBOTA¹, Kevin DELIME-CODRIN¹, Seongho CHOI¹, Keisuke HIRATA¹, Masahiro ADACHI², Makoto KIYAMA², Takashi MATSUURA², Yoshiyuki YAMAMOTO², Masaharu MATSUNAMI¹, Tsunehiro TAKEUCHI¹ ¹Toyota Technological Institute, ²Sumitomo Electric Industries, Ltd.

F3-13-010

Entropy-Driven Formation of Cubic Structure GeTe ZIHANG LIU

National Institute for Materials Science

December 13, 2019	December 13, 2019 Oral Session 9 Time 16:30-18:45 Room Work-2		
Oral Session 8			
Time 14:00-16:10 Room Work-2			
Chairpersons Zhigang CHEN, Teruyuki IKEDA	Chairpersons Michihiro OHTA, Yoshiyuki NONOGUCHI		
F3-13-K11 ► Keynote 14:00-14:25	F3-13-118 ► Invited 16:30-1		
Printed Flexible Thermoelectric Device of the Bismuth Telluride based Composite <u>Koji MIYAZAKI</u> ¹ , Shirikant SAINI ¹ , Satoshi IIKUBO ¹ , Ajay Kumar BARANWAL ² , Shuzi HAYASE ¹ ¹ Kyushu Institute of Technology, ² The University of Electro-	Study on Thermoelectric Transport Properties of Tetrahedrite and Chalcopyrite based compounds <u>Xiaoyuan ZHOU</u> Chongqing University		
Communications	F3-13-I19 ► Invited 16:50-1		
F3-13-I12► Invited14:25-14:45Thermoelectric Properties of van der Waals MaterialsTaishi TAKENOBUNagoya University	Enhanced Thermoelectric Property by use of Magnet Interaction <u>Naohito TSUJII</u> , Takao MORI National Institute for Materials Science		
F3-13-I13 Invited 14:45-15:05	F3-13-020 17:10-1		
New horizons in Thermoelectric Materials: inorganic-organic hybrids and machine learning for inorganic crystals Kedar HIPPALGAONKAR Institute of Materials Research and Engineering, A*Star	Substitution Effect on Thermoelectric Properties of CePd ₃ <u>Fumitake OGAWA</u> , Masaharu MATSUNAMI, Tsunehiro TAKEUCHI Toyota Technological Institute		
	F3-13-021 17:25-1		
F3-13-I14 ► Invited 15:05-15:25 Thermoelectric Materials Made from Molecularly-doped Semiconducting Carbon Nanotube Networks Yoshiyuki NONOGUCHI Nara Institute of Science and Technology	Thermoelectric properties of Ba substituted SrSi ₂ , Sr _{1-x} Ba _x Si ₂ <u>Motoharu IMAI</u> , Shiva K. SINGH National Institute for Materials Science		
F3-13-015 15:25-15:40	F3-13-122 ► Invited 17:40-1		
Flexible Inorganic Thermoelectric Materials Ag ₂ (S _{1×} Se _x) <u>Saurabh SINGH</u> , Keisuke HIRATA, Takuya MATSUNAGA, Dogyun BYEON, Masaharu MATSUNAMI, Tsunehiro TAKEUCHI Toyota Technological Institute	Could ZnO Meet the Expectations for Thermoelectric Properties - What Needs to Be Done? <u>Slavko BERNIK</u> ¹ , Guorong Ll ² , Emmanuel GUILMEAU ³ ¹ Jožef Stefan Institute, ² Shanghai Institute of Ceramics, Chinese Academy of Science, ³ CRISMAT/ENSICAEN Laboratory		
F3-13-016 15:40-15:55	F3-13-023 18:00-14		
Interface Engineering for solution processed CsSnl ₃ thermoelectric film <u>Ajay Kumar BARANWAL¹</u> , Shrikant SAINI ² , Daisuke HIROTANI ³ , Tomohide YABUKI ² , Satoshi IIKUBO ³ , Koji MIYAZAKI ² , Shuzi HAYASE ¹	Joint improvement of conductivity and Seebeck coeffic of atomic source assisted evaporated ZnO:Al films <u>Shiying LIU</u> Northeastern University		
¹ The University of Electro-Communications, 1-5-1	F3-13-024 18:15-1		
Chofugaoka, Chofu, Tokyo, 182-1515, Japan, ² Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, 804-8550, Japan, ³ Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan	Doping of CaCo- and CaMn-Ceramics improves thermoelectric conversion efficiency <u>Wilfried WUNDERLICH</u> ¹ , Helmut T. UCHIDA ² ¹ Tokai University, Material Science Department, ² Tokai		
F3-13-017 15:55-16:10	University, Department Precision Eng.		

F3-13-017

Activated reactive consolidation as a new approach to fabricate highly pure intermetallic thermoelectric materials

Babak ALINEJAD, Yuma YAMAMOTO, Teruyuki IKEDA Ibaraki University

	—— December 13, 2019	
	Oral Session 9)
Time16:30–18:45RoomWork-2ChairpersonsMichihiro OHTA, Yoshiyuki NONOGUCHI		
Tetrahedri Xiaoyuan	hermoelectric Transport Pr te and Chalcopyrite based of ZHOU g University	
F3-13-l19	▶ Invited	16:50-17:10
Interaction Naohito T	Thermoelectric Property by I SUJII, Takao MORI nstitute for Materials Science	use of Magnetic
F3-13-020		17:10-17:25
CePd₃ Fumitake Tsunehiro	on Effect on Thermoelectric <u>OGAWA</u> , Masaharu MATSUN TAKEUCHI chnological Institute	-
F3-13-021		17:25-17:40
SrSi ₂ , Sr _{1-x} E Motoharu	ctric properties of Ba subst Ba _x Si ₂ <u>IMAI</u> , Shiva K. SINGH nstitute for Materials Science	tituted
F3-13-I22	▶ Invited	17:40-18:00
Properties Slavko BE ¹ Jožef Ste	Meet the Expectations for - What Needs to Be Done? <u>RNIK</u> ¹ , Guorong LI ² , Emmanue fan Institute, ² Shanghai Instit cademy of Science, ³ CRISMA y	el GUILMEAU ³ ute of Ceramics,
F3-13-023		18:00-18:15
Joint impro of atomic Shiying LI	ovement of conductivity and source assisted evaporated <u>U</u> ern University	Seebeck coefficient
F3-13-024		18:15-18:30
Doping of	CaCo- and CaMn-Ceramics ctric conversion efficiency	improves

18:30-18:45

F3-13-025

Thermoelectric properties of (Pr, Nd, Sm)_{1-x}Sr_xFeO₃ (0.1≦*x*≦0.5) oxides Hiroshi NAKATSUGAWA¹, Shunta KAZAMA¹, Miwa SAITO²,

Yoichi OKAMOTO³ ¹Yokohama National University, ²Kanagawa University, ³National Defense Academy

- 195 -

December 11, 2019 –

Poster Session

Time 19:00-20:30 Room Trade-0

F3-11-P01

Magnetic coupling contributing to the enhanced thermoelectric performance of TiFe₂Sn Heusler alloys

Weihong GAO, Naohito TSUJII, Ramalingam Suresh KUMAR, Zihang LIU, Takao MORI

National Institute for Materials Science (NIMS)

F3-11-P02

Development of high performance thermoelectric thin films based on rare earth-free CoSb₃-Skutterudite

<u>Cédric BOURGÈS</u>, Isao OHKUBO, Naohito TSUJII, Takao MORI

National Institute for Materials Science (NIMS)

F3-11-P03

Low thermal conductivity and promising thermoelectric performance in A_x CoSb (A = V, Nb or Ta) half-Heuslers with inherent vacancies

<u>Jan-Willem BOS</u>¹, Daniella FERLUCCIO¹, Robert QUINN¹, John HALPIN², Donald MACLAREN²

¹Heriot-Watt University, ²University of Glasgow

F3-11-P04

Mg-pressure-controlled Annealing for Precise Control of Mg Content and Thermoelectric Properties of Mg₂Sibased Materials

Daisuke KATO¹, Kouta IWASAKI¹, Masahito YOSHINO², Tomoaki YAMADA², Takanori NAGASAKI² ¹Toyota Boshoku Corporation, ²Department of Energy

Engineering, Nagoya University

F3-11-P05

Thermoelectric Performance of n-type Mg_2Si Grown by the Vertical Bridgman Method

Yuki KAYAMA, Seiya YAMAGUCHI, Takuya KODAMA, Hiroto HAMBA, Daishi SHIOJIRI, Tsutomu IIDA Tokyo University of Science

F3-11-P06

Enhanced Thermoelectric Performance through Crystal Field Engineering in Transition Metal Doped GeTe

JING SHUAI

National Institute for Materials Science

F3-11-P07

Investigation of Thermoelectric Property of In_2Te_5 and The Origin of its Low Thermal Conductivity

<u>Wenhao ZHANG^{1,2}</u>, Naoki SATO¹, Takao MORI^{1,2}, Kaoru KIMURA³, Kazuki TOBITA³

¹National Institute of Material Science, ²University of Tsukuba, ³University of Tokyo

F3-11-P08

Chalcogenide-based Thermoelectrics: from Glasses and Ceramics to High Temperature Refractory Rare-Earth Materials

Bhuvanesh SRINIVASAN¹, David BERTHEBAUD¹, Franck GASCOIN², Catherine BOUSSARD-PLEDEL³, Michael J. REECE⁴, Bruno BUREAU³, Takao MORI⁵ ¹CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, Tsukuba 305-0044, Japan, ²Laboratoire CRISMAT, Normandie Univ., ENSICAEN, UNICAEN, CNRS, 14000 Caen, France, ³Univ. Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France, ⁴Queen Mary University of London, London E1 4NS, UK, ⁵WPI International Center for Materials Nanoarchitechtonics (WPI-MANA) and Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

F3-11-P09

First-principles Study on the Thermoelectric Performance of LaO(PbS)BiS₂ and Its Possible Enhancement in Analogous Compounds

<u>Keiya KUREMATSU</u>¹, Masayuki OCHI¹, Hidetomo USUI², Kazuhiko KUROKI¹

¹Osaka University, Japan, ²Shimane University, Japan

F3-11-P10

Electron-phonon Scattering Effect on the Transport Properties of TiS₂: A First-principles Study

<u>Hitoshi MORI</u>¹, Masayuki OCHI¹, Hidetomo USUI², Kazuhiko KUROKI¹ ¹Osaka University, ²Shimane University

F3-11-P11

Experimental and theoretical investigations of thermoelectric properties of doped thiospinel $CuCr_2S_4$

Paulina KAMIŃSKA, Piotr ŚPIEWAK, Wojciech ŚWIĘSZKOWSKI Faculty of Materials Science and Engineering, Warsaw University of Technology

F3-11-P12

Compositional Dependence Of The Thermoelectric Properties Of The Higher Boride REB₆₆

Philipp SAUERSCHNIG^{1,2}, Kantaro TSUCHIYA^{1,2}, Takaho TANAKA¹, Yuichi MICHIUE¹, Jean-Baptiste VANEY¹, Takashi AIZAWA¹, Toetsu SHISHIDO³, Takao MORI^{1,2} ¹National Institute for Materials Science (NIMS), International Center for Materials Nanoarchitectonics (WPI-MANA), Namiki 1-1, Tsukuba 305-0044, Japan, ²University of Tsukuba, Graduate School of Pure and Applied Sciences, 1-1-1 Tennoudai, Tsukuba 305-8671, Japan, ³New Industry Creation Hatchery Center, Tohoku University, Sendai 980–8579, Japan

F3-11-P13

Fabrication of P-type Antimony Telluride Nanoparticles via Spontaneous Oxidation-Reduction Reaction

<u>JUNYOUNG PARK,</u> MASAYUKI TAKASHIRI TOKAI UNIVERSITY

F3-11-P14

A Study on the Thermoelectric Performance and Stability of Cu₂Se-Reduced Graphene Oxide Composites

<u>SeungHyun JIN</u>¹, Jang-Yeul TAK², Woo Hyun NAM², YoungSoo LIM¹

¹Pukyoung National University, Busan, 48547, Korea, ²Korea Institute of Ceramic Engineering and Technology, Jinju, 52851, Korea

F3-11-P15

Thermal Transport Properties of Single-Crystalline Bi_2Te_3 Nanoplate Films Determined by 3ω Method

<u>Ryotaro MORI</u>¹, Norimasa OGA¹, Takuya KUROKAWA¹, Saburo TANAKA², Koji MIYAZAKI³, Masayuki TAKASHIRI¹ ¹Graduate School of Engineering, Tokai University, ²College of Engineering, Nihon University, ³Graduate School of Engineering, Kyushu Institute of Technology

F3-11-P16

Influence of exchange-correlation functional and potential on thermoelectric transport calculations of d⁰ perovskite oxides

<u>Isao OHKUBO</u>, Takao MORI National Institute for Materials Science (NIMS)

F3-11-P17

Investigation of Interfacial Effect on Thermoelectric Properties of TiO₂ Based Layered Composite Materials

<u>Hyoung-Won SON</u>^{1,2}, Naoki SATO¹, Takao MORI^{1,2} ¹National Institute for Materials Science, ²University of Tsukuba

F3-11-P18

Structural Characterization and Thermoelectric Properties of Composite Materials

(Ga,Al)₂O₃(ZnO)_m-ZnO:Ga,Al

<u>Yuichi MICHIUE</u>¹, Hyoung-Won SON^{1,2}, Takao MORI^{1,2} ¹National Institute for Materials Science, ²University of Tsukuba

F3-11-P19

Density Functional Calculations of Thermoelectricity using Nonequilibrium Green's Function Method

<u>Nobuhiko KOBAYASHI</u>¹, Hirokazu TAKAKI¹, Kenji HIROSE² ¹University of Tsukuba, ²NEC

F3-11-P20

NEGF+DFT Simulation on Thermoelectric Properties of Nitrogen-doped Carbon Nanotubes

Manaho MATSUBARA

Tokyo University of Science

F3-11-P21

Molecular Dynamics Study of Thermal Conducting Behavior in Nano Multilayer Films

Masato SHIMONO¹, Hirokazu TAKAKI^{1,2}, Kazuaki KOBAYASHI¹, Nobuhiko KOBAYASHI², Kenji HIROSE³ ¹National Institute for Materials Science, ²University of Tsukuba, ³Smart Energy Research Laboratories, NEC corporation

F3-11-P22

Theoretical Study on Thermoelectric Effects of Polycrystalline Bilayer Graphene

 $\frac{\text{Hikaru HORII}^1}{\text{Hidetoshi FUKUYAMA}^3}, \text{Kenji SASAOKA}^2, \text{Takahiro YAMAMOTO}^{1,2},$

¹Faculty of Engineering, Tokyo University of Science, ²RIST, Tokyo University of Science, ³Tokyo University of Science

F3-11-P23

Thermoelectric Simulation for Carbon Nanotube film Kotaro FUJISAKI

Tokyo University of Science

F3-11-P24

Electronic Band Structure of Various TiN (ScN) dot/MgO Superlattices

Kazuaki KOBAYASHI¹, Hirokazu TAKAKI^{1,2},

Masato SHIMONO³, Nobuhiko KOBAYASHI², Kenji HIROSE⁴ ¹International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, ²Institute of Applied Physics, University of Tsukuba, ³Research Center for Structural Materials (RCSM), National Institute for Materials Science, ⁴Smart Energy Research Laboratories, NEC corporation

F3-11-P25

MBE Fabrication of Magnesium Stannide Thin Films

<u>Mariana LIMA</u>^{1,2}, Takashi AIZAWA¹, Takeaki SAKURAI², Isao OHKUBO¹, Cedric BOURGES¹, Tetsuya BABA¹, Naoki SATOH¹, Takao MORI¹

¹National Institute for Materials Science, Tsukuba, 305-0044, Japan, ²University of Tsukuba, Tsukuba, 305-8577, Japan

F3-11-P26

Fabrication and evaluation of magnetic chalcopyrite thermoelectric thin films

Hong PANG¹, Cédric BOURGÈS¹, Naohito TSUJII¹, Takao MORI^{1,2}

¹National Institute for Materials Science (NIMS), ²University of Tsukuba, Graduate School of Pure and Applied Sciences

F3-11-P27

Thermoelectric Properties of Unfilled Skutterudite-Organic Hybrid Composite

Fainan FAILAMANI¹, Takao MORI^{1,2}

¹National Institute for Materials Science, ²Graduate School of Pure and Applied Sciences, University of Tsukuba

F3-11-P28

Gate-tuned Thermoelectric Performances in Aligned Conducting Polymers

Katsuya WATANABE¹, Kaito KANAHASHI², Naoya TAKEKOSHI¹, Hisaaki TANAKA¹, Hiroshi ITO¹, Hiromichi OHTA³, Taishi TAKENOBU^{1,2} ¹Nagoya University, ²Waseda University, ³Hokkaido University Symposium F

F3-11-P29

Thermoelectric Properties of Carbon Nanotube with Local Distortion Deformation

<u>Keiichiro MATSUMOTO</u>, Takahiro YAMAMOTO Tokyo University of Science

F3-11-P30

Ni-Based Alloy Thermoelectric Module As a Reliable Testing Reference For Power Generation

<u>Raju CHETTY</u>¹, Kazuo NAGASE¹, Makoto AIHARA¹, Priyanka JOOD¹, Hiroyuki TAKAZAWA^{1,2}, Michihiro OHTA¹, Atsushi YAMAMOTO¹

¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, ²Thermal Management Materials and Technology Research Association (TherMAT), Tokyo, Japan

F3-11-P31

Nanostructured PbTe- and Colusite-based Thermoelectric Power Generation: Materials and Modules

<u>Michihiro OHTA</u>¹, Raju CHETTY¹, Priyanka JOOD¹, Atsushi YAMAMOTO¹, Koichiro SUEKUNI², Mercouri G. KANATZIDIS³

¹National Institute of Advanced Industrial Science and Technology (AIST), ²Kyushu University, ³Northwestern University and Argonne National Laboratory

Symposium F

Invited

Absorbents and Catalysts

Shik Chi Edman TSANG University of Oxford

F4-13-I08 Invited

F4-13-107

15:30-16:00

15:00-15:30

Identification of Ferrimagnetic Orbitals Preventing Jahn-Teller Distortions in LixMn204 Cathodes

The Impacts of Synchrotron Characterization on Porous

Bernardo BARBIELLINI LUT University (Finland)

December 13, 2019

Oral Session 9

Time 16:30-18:20 Room Port-4

Chairperson Di-Jing HUANG

F4-13-109 ► Invited 16:30-17:00

Multi-scale 3D Imaging of Strain and Structure with Dark-Field X-Ray Microscopy

Hugh SIMONS Technical University of Denmark

F4-13-I10 ► Invited

17:00-17:30

Intragranular 3D orientation and stress mapping for bulk steel

Yujiro HAYASHI

Toyota Central R&D Labs., Inc.

F4-13-011

17:30-17:55

Hard X-ray Ptychography and Multi-Shot Coherent **Diffraction Imaging with Coherent Projection** Illumination Optics

Yuki TAKAYAMA¹, Keizo FUKUDA¹, Motoki KAWASHIMA¹, Yuki AOI¹, Shotaro OKA², Hiroshi ONO², Tatsuki AKADA¹, Takumi IKEDA¹, Yasushi KAGOSHIMA¹

¹University of Hyogo, ²Toshiba Corporation

F4-13-012

17:55-18:20

High-energy x-ray nano-CT for nondestructive multiscale 3D/4D imaging

Akihisa TAKEUCHI

JASRI / Japan

December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

F4-13-P01

Direct observation of nucleation process of magnetic vortex structure by means of time-resolved photoemission electron microscopy

Takuo OHKOCHI^{1,2}, Masaki OURA², Hitoshi OSAWA¹, Akinobu YAMAGUCHI^{2,3}, Hidenori FUJIWARA^{2,4}, Akira SEKIYAMA^{2,4}, Toyohio KINOSHITA¹ ¹Japan Synchrotron Radiation Research Institute, ²RIKEN/ SPring-8, ³University of Hyogo, ⁴Osaka University

F4-13-P02

Detecting Intramolecular Dynamics of GPCRs in Living Cells Using Diffracted X-ray Blinking Technique

Masaki ISHIHARA¹, Shoko FUJIMURA², Kouhei ICHIYANAGI^{3,4}, Shunsuke NOZAWA³, Shinichi ADACHI³, Ryo FUKAYA³, Masahiro KURAMOCHI^{1,2}, Kazuhiro MIO², Yuji C SASAKI^{1,2} ¹Graduate School of Frontier Sciences. The Univ. Tokvo. ²Operand OIL, National Institute of Advanced Industrial Science and Technology, ³High Energy Accelerator Research Organization, ⁴Jichii Medical Univ.

F4-13-P03

Detector Saturation by Infrared Synchrotron Radiation and Infrared Free Electron Laser Light Sources

Yuka IKEMOTO¹, Heishun ZEN² Japan Synchrotron Radiation Research Institute/Japan, ²Kyoto University

F4-13-P04

Study on mechanism and control of uniaxial magnetic anisotropy induced in the ferromagnetic/ferroelectric heterojunction using XMCD-PEEM and XPS

Akinobu YAMAGUCHI^{1,4}, Ryo NAKAMURA^{1,4} Shunya SAEGUSA^{1,4}, Aiko NAKAO¹, Yuichi UTSUMI¹, Keisuke YAMADA², Takuo OHKOCHI^{3,4}, Toyohiko KINOSHITA³, Masaki OURA⁴ ¹University of Hyogo, ²Gifu University, ³Japan Synchrotron Radiation Research Institute, ⁴RIKEN, SPring-8 Center

F4-13-P05

X-ray Absorption Spectroscopy investigation and computer simulation of Manganese Lithium boratebased glass

Pattarpong NIJAPAI Suranaree University of Technology

F4-13-P06

Spin/orbital magnetization switching behaviour for CoFeB/MgO and CoFeB/Ta interface

Hiroshi SAKURAI¹, Kento HAISHI¹, Akane SHIBAYAMA¹, Kosuke SUZUKI¹, Kazushi HOSHI¹, Naruki TSUJI², Yoshiharu SAKURAI²

¹Gunma University, ²Japan Synchrotron Radiation Research Institute

F4-13-P07

Spin-Orbit Assisted Correlated Materials at High

Pressure: Novel Phases and Phenomena Yang DING

HPSTAR

F4-13-P08

Non-destructive Visualization of Lithiation State in the Real Batteries using Compton Scattering Imaging

Kosuke SUZUKI Gunma University

F4-13-P09

Data driven analysis of the redox factor of $Li_xNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ based on feature selection from *in-situ* XAFS/XRD data by machine-learning

 $\underline{\text{Takuya}\ \text{MORI}^1}, \text{Takashi}\ \text{SEGI}^1, \text{Takayuki}\ \text{TSUBOTA}^1, \text{Lei}\ \text{LI}^2, \text{Kazushi}\ \text{YOKOYAMA}^2$

¹Kobelco research institute, inc., ²Hyogo Science and Technology Associations

F4-13-P10

In-situ/Operando Synchrotron Radiation X-ray-based Multi-analytical Measurements for Polymer Electrolyte Fuel Cells

Kotaro HIGASHI¹, Oki SEKIZAWA^{1,2}, Tomohiro SAKATA¹, Takuma KANEKO¹, Nozomu ISHIGURO³, Mizuki TADA⁴, Tomoya URUGA^{1,2}, Yasuhiro IWASAWA¹

¹The University of Electro-Communications, ²Japan Synchrotron Radiation Research Institute, ³RIKEN Harima Branch, ⁴Nagoya University

F4-13-P11

Soft x-ray microbeam ARPES and High-Resolution RFA: New Photoemission Endstations at BL25SU of SPring-8

Takayuki MURO Japan Synchrotron Radiation Research Institute

F4-13-P12

Direct Observation of Anion Redox in Li-excess Oxides with Different Covalent and Ionic Characters by operando Soft/Hard X-ray Absorption Spectroscopy Kentaro YAMAMOTO

Kyoto University

F4-13-P13

Reaction Distribution Analysis of Rechargeable Batteries using Two-dimensional X-ray Probe Yuki ORIKASA

Ritsumeikan University

Cluster G Materials for Smart Systems

Symposium -

- G-1 In-field Molecules for Next-generations Flexible Electronics
- G-2 **5th E&J BLS** Materials Frontier for Transparent Advanced Electronics
- G-3 Perovskite and Metal Halide Materials Based Photovoltaics and Optoelectronics
- G-4 Plasmonic Materials: from Fundamentals to Applications
- G-5 Synchrotron X-ray Characterization of Function Material Thin Films and Fine Particles

- December 13, 2019 — Symposium G-1

In-field Molecules for Next-generations Flexible Electronics

Organizers

Tsuyoshi SEKITANI (Osaka University) Hiroshi YAMAMOTO (Institute for Molecular Science)

December 13, 2019 -

Oral Session 8

Time 14:00-16:20 Room Work-3

Chairperson Hiroshi YAMAMOTO

G1-13-I01 Invited

14:00-14:20

Chiral Molecules Based Simple Spintronics

Yossi PALTIEL

The Hebrew University of Jerusalem

G1-13-I02 Invited

14:20-14:40

A hidden role of the smallness of the material in flexible devices

Fumitaka KAGAWA University of Tokyo & RIKEN CEMS

G1-13-003

14:40-15:00

15:00-15:20

15:20-15:40

Carrier Transport in Hybrid PbS Colloidal Quantum Dot Transistors with Thiophene-Based Crosslinking Ligands

Ibuki WATANABE¹, Liming LIU¹, Satria Zulkarnaen BISRI², Ian JOHNSON³, Yasuhiro ISHIDA², Jeremy BURROUGHES³, Yoshihiro IWASA^{1,2}

¹University of Tokyo, ²RIKEN-Center for Emergent Matter Science, ³Cambridge Display Technolgy

G1-13-I04 Invited

Effects of Dephasing upon Quantum Dynamical Phenomena in Condensed Phase Molecular Processes

Akihito ISHIZAKI

Institute for Molecular Science, National Institutes of Natural Sciences

G1-13-I05 Invited

Gate- and strain-induced superconductivity in an organic strongly correlated transistor

Yoshitaka KAWASUGI^{1,2}, Kazuhiro SEKI³, Jiang PU⁴, Taishi TAKENOBU⁴, Seiji YUNOKI^{2,3}, Hiroshi YAMAMOTO⁵, Reizo KATO²

¹Toho University, ²RIKEN, ³RIKEN CEMS, ⁴Nagoya University, ⁵Institute for Molecular Science

G1-13-I06 Invited

15:40-16:00

Development of Organic-semiconductor injection laser

Hidekazu SHIMOTANI¹, Kanagasekaran THANGAVEL², Shun ONUKI¹, Taiki MIURA¹, Katsumi TANIGAKI^{1,2} ¹Dept. Physics, Tohoku University, ²AIMR, Tohoku University

G1-13-007

16:00-16:20

Biocompatible gel for EEG measurement with high S/N ratio

Yuki NODA, Hirokazu IIDA, Toshikazu NEZU, Teppei ARAKI, Shunsuke YOSHIMOTO, Tsuyoshi SEKITANI Osaka University

	—— December 13, 2019		
_	Oral Session 9		
		Work-3	
Chairperso	on Tsuyoshi SEKITANI		
G1-13-I08	▶ Invited	16:30-16:50	
Artificial Intelligence-Nanopore for Infection Control			
<u>Masateru</u> Osaka Uni	TANIGUCHI iversity		
	iversity		
G1-13-I09	▶ Invited	16:50-17:1	
	ole Organic photonic syster YOKOTA, Takao SOMEYA	n	
	rsity of Tokyo		
G1-13-010		17:10-17:3	
	l Monitoring Systems with B		
Organic Ar			
<u>Takafumi</u>	UEMURA ^{1,2} , Naoko NAMBA ^{1,2}	² , Masaya KONDO ^{1,2}	
	SUGIYAMA ^{1,2} , Mihoko AKIYA (OSHIMOTO ¹ , Yuki NODA ¹ , To		
Tsuyoshi	SEKITANI ^{1,2}		
	tute of Scientific and Industri , ² Advanced Photonics and B		
	n Laboratory, AIST		
G1-13-I11	►Invited	17:30-17:5	
	ding and Designing High-P		
Film Trans	sistors with Heterostructure	es	
	<u>,</u> en University		
G1-13-012		17:50-18:1	
	of Energy Levels on Dopin		
	or Energy Eercie on Bopin		
	emiconductors	g Flocesses III	
Organic Se Ross WAF	RREN ¹ , Alberto PRIVITERA ¹ , N	-	
Organic Se Ross WAR Jenny NE	<u>RREN¹,</u> Alberto PRIVITERA ¹ , N LSON ²	Moritz RIEDE ¹ ,	
Organic Se Ross WAF Jenny NE ¹ University	RREN ¹ , Alberto PRIVITERA ¹ , N	Noritz RIEDE ¹ , London	
Organic Se Ross WAF Jenny NE ¹ University G1-13-013	RREN ¹ , Alberto PRIVITERA ¹ , N LSON ² y of Oxford, ² Imperial College	/oritz RIEDE ¹ , London 18:10-18:3	
Organic Se Ross WAF Jenny NE ¹ University G1-13-013	RREN ¹ , Alberto PRIVITERA ¹ , N LSON ² y of Oxford, ² Imperial College d Transparent Electrodes 1	/oritz RIEDE ¹ , London 18:10-18:3	
Organic Se Ross WAF Jenny NEI ¹ University G1-13-013 Flexible an Electronics <u>Teppei AF</u>	RREN ¹ , Alberto PRIVITERA ¹ , N LSON ² y of Oxford, ² Imperial College nd Transparent Electrodes † s RAKI, Yuki NODA, Takafumi U	Aoritz RIEDE ¹ , London 18:10-18:3 toward Implantable EMURA,	
Organic Se Ross WAF Jenny NEI ¹ University G1-13-013 Flexible an Electronics <u>Teppei AF</u>	RREN ¹ , Alberto PRIVITERA ¹ , N LSON ² y of Oxford, ² Imperial College nd Transparent Electrodes 1 s RAKI, Yuki NODA, Takafumi U (OSHIMOTO, Shintaro IZUMI	Aoritz RIEDE ¹ , London 18:10-18:3 toward Implantable EMURA,	

Symposium G

- December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

G1-13-P01

Role of the molecular configuration on the electronic structure of organic crystals: A combined DFT and GW study

Susumu YANAGISAWA¹, Ikutaro HAMADA² ¹University of the Ryukyus, ²Osaka University

G1-13-P02

Advancement of two-ply CNT Yarn supercapacitor properties by wet coated molybdenum oxide

<u>Tatsuki MARUI</u>, Yuta NISHINA, Masaki HADA, Takeshi NISHIKAWA, Yoshifumi YAMASHITA, Yasuhiko HAYASHI Okayama University

G1-13-P03

Structure changing of residual amorphous carbon in twisted Double-Helix carbon nanotube yarns by joule heating

Shogo IEMOTO¹, Tomohiro NAKAGAWA¹, Hirotaka INOUE¹, Karthik Paneer SELVAM¹, Masaki HADA^{1,2},

Takeshi NISHIKAWA¹, Yoshifumi YAMASHITA¹, Yasuhiko HAYASHI¹

¹Okayama University, ²University of Tsukuba

December 11–13, 2019		December 11, 2019			
Symposium G-2 5th E&J BLS		Oral Session 2			
		Т	Time 14:00-16:00 Room Work-1		
			Chairperso	Chairpersons Monica MORALES-MASIS,	
Materia	Is Frontier for Transp	arent Advanced	Naoomi YAMADA		
	Electronics		G2-11-I06	▶ Invited	14:00-14::
	[Organizers]				
Yuzo	SHIGESATO (Aoyama Ga	kuin University)	Combining Theory, Experiment and Data Analytics to Accelerate Materials Development		
	as KLEIN (Technische Univ	ersität Darmstadt)	-	John PERKINS	
	Nobuto OKA (Kindai Un	iversity)	Materials Laborator	Science Center, Natior y	nal Renewable Energy
	December 11, 20	19	G2-11-I07	▶ Invited	14:30-15:
	Oral Session	1		esign concept of nan	
Ī	ime 9:00-11:30 Roo	m Work-1			ors to realize exceptior
Chairperso	ons Yuzo SHIGESATO, Joh	n D. PERKINS,		patible properties for	-
	Marius GRUNDMANN				an KIM², Hideo HOSONO Inc., ²Materials Research
					yo Institute of Technolog
	Preparation		G2-11-I08	►Invited	15:00-15:
	9:00-9:30				e and P-Type Electronic
			Semicondu	uctors for Thin Film [Devices
2-11-K01	►Keynote	9:30-10:00		Marius GRUNDMANN	
-	ies for a clean and health	y Indoor environment	Universitä	t Leipzig	
G. KIRIAK			G2-11-I09	► Invited	15:30-16:
IESL, FUR	TH and Univ. of Crete			letal to Semiconduct	
2-11-102	► Invited	10:00-10:30		formance of Amorph uctor Thin Film Trans	
	izing transparent conduc	-	Sang Yeol		
	disordered oxides to ep ORALES MASIS, Yury SMI	-	Cheongju		
	of Twente. MESA+ Institu				
62-11-003		10:30-10:45		— December 11	
	nt conducting La-doped			Oral Sessi	
	and Annealing on Optoel		T	ime 16:30-18:30	Room Work-1
	RNOV, Phu Tran Phong LE, NDERS, Monica MORALES		Chairperso	ons George KIRIAKIDI	S, Sang Yeol Lee
	stitute for Nanotechnology		CO 11 1/10	Novnoto	16.00 17
			G2-11-K10 Perspectiv	►Keynote es of Novel Application	16:30-17: ons of Ferroelectric/
2-11-104	▶ Invited ents of CuI Films as a Wi	10:45-11:15	-	ric Thin Films for Sm	
Semicond		uegah h-i ìhe		UJIMURA	-
Naoomi Y			Osaka Pre	efecture Univ.	
Chubu Un			G2-11-l11	► Invited	17:00-17
32-11-005		11:15-11:30		emetric Thick-Film G	as Sensor Based on
	Heterojunction Structure	e for In–Ga–Zn–O	Layered Cu		
thin-film transistor		Youichi SHIMIZU			
<u>Daichi KORETOMO</u> ¹ , Shuhei HAMADA ¹ , Marin MORI ¹ , Mamoru FURUTA ^{1,2}		kyushu in:	stitute of Technology		
Kochilln	iversity of Technology, ² Ce	nter for			

G2-11-I12 ► Invited 17:30-18:00	December 12, 2019		
Exploration of bi-functional electrode materials for	Oral Session 5		
oxygen reduction and oxygen evolution	Time 14:00–16:00 Room Miel-2		
<u>Masayoshi YUASA</u> , Miu TANAKA, Mamia YOSHIDA, Masayo SHIMIZU			
Kindai University	Chairpersons Takaya KUBO, Luis PEREIRA		
G2-11-113 Invited 18:00-18:30	G2-12-K06 ► Keynote 14:00-14:30		
Local Structure of Conductive Vanadate Glass and its	Performance and Fermi Level Limits in Oxides		
Application to the Rechargeable Batteries	<u>Andreas KLEIN</u> Technische Universität Darmstadt		
<u>Nobuto OKA</u> , Hajime MIYAMOTO, Ryoya SUGIMOTO, Sayaka MASUDA, Masayoshi YUASA, Tetsuaki NISHIDA			
Kindai University	G2-12-107 ► Invited 14:30-15:00		
December 10, 0010	Electron Affinity and Ionization Potential Tuning of Amorphous Cd-In-Ga-O Films		
December 12, 2019 — Oral Session 4	Hiroshi YANAGI, Minseok KIM, Ryota FUJIMOTO,		
	Kei NAKAMURA		
Time 9:00-11:30 Room Miel-2	University of Yamanashi		
Chairpersons Andreas KLEIN, Hiroshi YANAGI	G2-12-108 ► Invited 15:00-15:30		
	Effects of Mechanical and Bias Stress on Dual-gate a-IGZO-TFTs		
Preparation	Qun ZHANG ¹ , Jianwen YANG ¹ , Ting-Chang CHANG ² ,		
9:00-9:30	Po-Yung LIAO ² ¹ Fudan University, ² National Sun Yat-Sen University		
G2-12-I01 ► Invited 9:30-10:00			
G2-12-I01 ► Invited 9:30-10:00 Solution-processed Colloidal Quantum Dot-based	G2-12-I09 ► Invited 15:30-16:00		
Infrared Photovoltaics toward Ultra-high Efficiency	Amorphous IGZO Thin-Film Transistors with AIO _x :H Dielectrics for Emerging Functional Applications		
Takaya KUBO	Dielectrics for Emerging Functional Applications		
Takaya KOBO	Shi-Jin DING		
The University of Tokyo	<u>Shi-Jin DING</u> Fudan University		
	Fudan University		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed	Fudan University December 13, 2019		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive	Fudan University December 13, 2019 Oral Session 8		
The University of Tokyo G2-12-I02 Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes	Fudan University December 13, 2019 Oral Session 8 Time 14:00–16:00 Room Trade-1		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive	Fudan University December 13, 2019 Oral Session 8		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Solution processed Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo 10:30-10:45	Fudan University December 13, 2019 Oral Session 8 Time 14:00–16:00 Room Trade-1		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes	Fudan University December 13, 2019 Oral Session 8 Time 14:00−16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00−14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA,		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Solution processed Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo 10:30-10:45 Numerical Simulation of Nanoparticle Network	Fudan University December 13, 2019 Oral Session 8 Time 14:00−16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00−14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating <u>Rei TATSUMI</u> ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² ,	Fudan University December 13, 2019 Oral Session 8 Time 14:00−16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00−14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹	Fudan University December 13, 2019 Oral Session 8 Time 14:00−16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00−14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-I02 Invited		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00	Fudan University December 13, 2019 Oral Session 8 Time 14:00−16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-101 Invited 14:00−14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-102 Invited 14:30−15:00 Functionalization of oxide-based mixed anion		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00 Fabrication of Transparent ZnO/(CuZn)O Heterojunction Diodes by Electrochemical Deposition	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-I02 Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films Yasushi HIROSE ¹		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-I02 Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films		
The University of Tokyo G2-12-I02 ► Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00 Fabrication of Transparent ZnO/(CuZn)O Heterojunction Diodes by Electrochemical Deposition Mansoureh KEIKHAEI, Masaya ICHIMURA	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-I01 Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-I02 Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films Yasushi HIROSE ¹ 'The University of Tokyo, ² Kanagawa Academy of Science		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00 Fabrication of Transparent ZnO/(CuZn)O Heterojunction Diodes by Electrochemical Deposition Mansoureh KEIKHAEI, Masaya ICHIMURA Nagoya Institiute of Technology G2-12-105 Invited 11:00-11:30 Hydrogenated Indium-based and Indium-free TCOs	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-101 Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-102 Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films Yasushi HIROSE ¹ 'The University of Tokyo, ² Kanagawa Academy of Science and Technology G2-13-103 Invited 15:00-15:30		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00 Fabrication of Transparent ZnO/(CuZn)O Heterojunction Diodes by Electrochemical Deposition Mansoureh KEIKHAEI, Masaya ICHIMURA Nagoya Institiute of Technology 11:00-11:30 Hydrogenated Indium-based and Indium-free TCOs Luis PEREIRA, Diana GASPAR, Marco MOREIRA,	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-101 ▶ Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-102 ▶ Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films Yasushi HIROSE ¹ ¹ The University of Tokyo, ² Kanagawa Academy of Science and Technology G2-13-103 ▶ Invited 15:00-15:30 Toward understanding the defect-functionality relationship in bipolar SnO thin films		
The University of Tokyo G2-12-I02 ▶ Invited 10:00-10:30 Nanostructure and properties of solution processed oxide semiconductor films for transparent conductive electrodes Yoshiko TSUJI, Naoya TSUTSUMI, Yuuki KOMINAMI The University of Tokyo G2-12-003 10:30-10:45 Numerical Simulation of Nanoparticle Network Formation in Transparent Conductive Coating Rei TATSUMI ¹ , Osamu KOIKE ² , Yukio YAMAGUCHI ² , Yoshiko TSUJI ¹ ¹ The University of Tokyo, ² Products Innovation Association G2-12-004 10:45-11:00 Fabrication of Transparent ZnO/(CuZn)O Heterojunction Diodes by Electrochemical Deposition Mansoureh KEIKHAEI, Masaya ICHIMURA Nagoya Institiute of Technology G2-12-105 Invited 11:00-11:30 Hydrogenated Indium-based and Indium-free TCOs	Fudan University December 13, 2019 Oral Session 8 Time 14:00-16:00 Room Trade-1 Chairpersons Shijie WANG, Hui YE G2-13-101 Invited 14:00-14:30 ZnO Based Semiconductors for Excitonic Devices Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University G2-13-102 Invited 14:30-15:00 Functionalization of oxide-based mixed anion compound thin films Yasushi HIROSE ¹ 'The University of Tokyo, ² Kanagawa Academy of Science and Technology G2-13-103 Invited 15:00-15:30		

G2-13-I04 ► Invited

15:30-16:00

Improved environmental stability of high-mobility ${\rm In_2O_3}$ films fabricated at low process temperatures

<u>Takashi KOIDA</u>, Yuko UENO, Hajime SHIBATA National Institute of Advanced Industrial Science and Technology (AIST)

- December 13, 2019 ------

Oral Session 9

Time 16:30-17:30 Room Trade-1

Chairpersons Takashi KOIDA, Yasushi HIROSE

G2-13-I05 Invited

16:30-17:00

The Dopant Localization in ZnO Materials

Shijie WANG

Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research)

G2-13-I06 Invited

17:00-17:30

Transparent conductive oxides: Near infrared epsilon near zero materials

<u>Hui YE</u> Zhejiang University

December 12, 2019

Poster Session

Time 16:30-18:00 Room Trade-0

G2-12-P01

Comparison of window layers in $Cu(In,Ga)Se_2$ solar cells and mini-modules

<u>Takashi KOIDA</u>, Yuko UENO, Jiro NISHINAGA, Yukiko KAMIKAWA, Hirofumi HIGUCHI, Masayuki IIOKA, Hideki TAKAHASHI, Hajime SHIBATA

National Institute of Advanced Industrial Science and Technology (AIST)

G2-12-P02

Amperometric Nitrite-Ion Sensing Properties of Perovskite-Type Oxide Based Thick-Film Electrode

<u>Youichi SHIMIZU</u>¹, Mikako MORIYAMA¹, Yasunari SHINODA¹, Haruna SHIMOJI¹, Satoko TAKASE¹, Norahim IBRAHIM² ¹Kyushu Institute of Technology, ²Universiti Teknologi Malaysia

G2-12-P03

Nanocarbon Catalyst synthesized by the Solution Plasma Process for the Air-electrode of Metal-Air Battery

<u>Ryota IMAMURA</u>, Tomoya OKAMURA, Sayaka MASUDA, Yui IYOKU, Ryoya SUGIMOTO, Masayoshi YUASA, Tetsuaki NISHIDA, Nobuto OKA Kindai University

G2-12-P04

Bifunctional Air-Electrode Catalyst composed of Nicontaining Conductive Vanadate Glass developed for Metal-Air Battery

<u>Ryoya SUGIMOTO</u>, Hajime MIYAMOTO, Takahisa SAKURAGI, Sayaka MASUDA, Masayoshi YUASA, Tetsuaki NISHIDA, Nobuto OKA Kindai University

G2-12-P05

Carbon -doped TiO₂ Nanoparticles synthesized as the Visible-light Active Photocatalyst by Hydrothermal Method

<u>Ryoya SUGIMOTO</u>, Rika MIYOSHI, Sayaka MASUDA, Tetsuaki NISHIDA, Nobuto OKA Kindai University

G2-12-P06

Electrocatalyst for glucose oxidation and oxygen evolution using transition metal composite oxides

Masayoshi YUASA, Kouki SHIBAYAMA, Yusuke TAKIMIYA, Shogo ASAYAMA Kindai University

G2-12-P07

New Cathode Active Material using Vanadate Glass for High-capacity Li ion Battery

Sayaka MASUDA¹, Syunsuke MATSUSAKO¹, Ryoya SUGIMOTO¹, Honami INADA², Hikaru HAYAKAWA², Tetsuaki NISHIDA¹, Nobuto OKA¹ ¹Kindai University, ²MORESCO Corporation

G2-12-P08

Local Structure and Electrical Conductivity of Highly Conductive Vanadate Glass containing Tin or Indium Oxides

Sayaka MASUDA¹, Yuki FUJITA¹, Naomi YAMAGUCHI¹, Syunsuke MATSUSAKO¹, Ryoya SUGIMOTO¹, Sachiya SHIBA², Shiro KUBUKI², Tetsuaki NISHIDA¹, Nobuto OKA¹ ¹Kindai University, ²Tokyo Metropolitan University

G2-12-P09

Antibacterial activity of new ABC semiconductor and the effect of light irradiation

<u>J. MIYAMOTO¹</u>, K. ITO², K. TANAKA¹ ¹Kindai University, ²Ito Research Institute Co.,Ltd.

G2-12-P10

TiO_2/WO_3 multi-layered photocatalyst with the metallic nano-particles as co-catalyst

<u>Yuya KATO</u>¹, Kenta TANIYAMA¹, Yuka KITAZAWA¹, Makoto KASHIWAGI¹, Jyunjyun JIA², Shinichi NAKAMURA³, Yuzo SHIGESATO¹

¹Graduated School of Science and Engineering, Aoyama Gakuin University, ²Faculty of Science and Engineering, Waseda University, ³Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University

G2-12-P11

Electrical and Optical Properties of Nb-doped TiO_2 Films Deposited by Reactive Sputtering using Ni-Ti alloy target with impedance control systems

<u>Nobuto OKA</u>^{1,2}, Yuta SANNO², Junjun JIA², Yuzo SHIGESATO² ¹Kindai University, ²Aoyama Gakuin University

G2-12-P12

Solution-Processed Al-doped ZnO (AZO) Multilayer Thin-Film Transistors using Composition Controlled AZO Buffer toward Transparent Electronics

<u>Kazuyori OURA</u>, Keisuke TAKANO, Masatoshi KOYAMA, Toshihiko MAEMOTO, Shigehiko SASA Osaka Institute of Technology

G2-12-P13

Plasma Posttreatment of Transparent Conductive Electrodes

<u>Oleg SERGEEV</u>, Hosni MEDDEB, Hyo-Jei CHO, Kai GEHRKE, Martin VEHSE

DLR Institute of Networked Energy Systems

G2-12-P14

Evaluation of gas barrier properties for amorphous ZnSnOx and SiNx films using transparent conductive oxide films

Keisuke TSUSHIMA¹, Makoto KASHIWAGI¹, Junjun JIA², Daisuke ONO³, Shigeki MATSUNAKA³, Yuzo SHIGESATO¹ ¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, ³Shibaura Mechatronics Corporation

G2-12-P15

Transparent diamond-like carbon films deposited by sputtering

<u>Azuma NISHIZAWA</u>¹, Nanako ISHIGURO¹, Makoto KASHIWAGI¹, Junjun JIA², Manami KUROSE³, Hironobu MACHINAGA³, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, ³Core Technology Research Center, Nitto Denko Corporation

G2-12-P16

Electrical and Optical Properties of Transparent p-Type Cul Alloyed with CuBr

<u>Yuta TANIDA</u>, Shogo YOSHIDA, Naoomi YAMADA University of Chubu

G2-12-P17

Zirconium oxy-sulfide: a disperse valence band, p-type transparent conductor

Angela N. FIORETTI¹, Sebastian SIOL², Christophe BALLIF¹, Mathieu BOCCARD¹, <u>Monica MORALES-MASIS³</u>

¹Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering, Ecole Polytechnique Federale de Lausanne, Neuchatel, Switzerland, ²Empa–Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland, ³University of Twente, MESA+ Institute for Nanotechnology, Enschede, The Netherlands

G2-12-P18

Sputter deposition high-mobility and low-resistive

amorphous In₂O₃:Sn films by using nitrogen impurities <u>Naho ITAGAKI</u>, Soichiro MURAOKA, Daisuke YAMASHITA, Kunihiro KAMATAKI, Kazunori KOGA, Masaharu SHIRATANI Kvushu University

G2-12-P19

Homogeneous and Low-Resistivity ZnO Films by Zn Insertion

Yasuji YAMADA¹, Orkut SANCAKOGLU^{1,2}, Rei SUGIURA¹, Shuhei FUNAKI¹, Yumika YAMADA¹

¹Shimane University, ²Metallurgical and Materials Engineering, Dokuz Eylul University

G2-12-P20

Thermal Conductivity of Ti or W-doped Diamond-like carbon thin films

Takahiro SUZUKI¹, Yuichiro YAMASHITA^{1,2}, Takashi YAGI^{1,2}, Naoyuki TAKETOSHI^{1,2}, Junjun JIA³, <u>Makoto KASHIWAGI¹</u>, Yuzo SHIGESATO¹

¹Aoyama Gakuin University, ²National Institute of Advanced Industrial Science and Technology, ³Waseda University

G2-12-P21

Fabrication of P-doped SnO_2 thin films by pulsed laser deposition

M. FUKUMOTO, S. NAKAO, Y. HIROSE, T. HASEGAWA Department of Chemistry, The University of Tokyo

G2-12-P22

Crystallization Behavior of Doped Amorphous Indium Oxide Films

<u>Shimpei IWASAKI</u>¹, Junjun JIA², Toshihiro OKAJIMA³, Shin-ichi NAKAMURA⁴, Shingo YAMAMOTO¹, Makoto KASHIWAGI¹, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Waseda University, ³Kyushu Synchrotron Light Research Center, ⁴Center for Instrumental Analysis, Aoyama Gakuin University

G2-12-P23

Optical properties of TiO_2 , TiO_{2x} and Nb-doped TiO_2 films analyzed by scanning ellipsometry

<u>Yuzo SHIGESATO</u>¹, Haruka YAMAMOTO¹, Junjun JIA², Hiroshi NISIYAMA¹

¹Aoyama Gakuin University, ²Waseda University

G2-12-P24

Thermal conductivity of polycrystalline rutile $Ti_{1-x}Sn_xO_2$ films

<u>Hiroki KOIZUMI</u>¹, Takashi YAGI², Yuichiro YAMASHITA², Makoto KASHIWAGI¹, Junjun JIA³, Yuki OGUCHI¹, Naoyuki TAKETOSHI², Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²National Metrology Institute of Japan (NMIJ), AIST, ³Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P25

Thermophysical property of Y-Mg alloy switchable mirror thin films

<u>Hina SAITO</u>¹, Yuichiro YAMASHITA^{1,2}, Takashi YAGI^{1,2}, Makoto KASHIWAGI¹, Junjun JIA³, Naoyuki TAKETOSHI^{1,2}, Yuzo SHIGESATO¹

¹Graduate school of Science and Engineering, Aoyama Gakuin University, ²National Metrology Institute of Japan (NMJ), National Insitute Science and Technology (AIST), ³Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University Building 61-414

G2-12-P26

Thermophysical and optical properties of Al_2O_3 -based amorphous complex oxides films deposited by cosputtering

<u>Chinami ABE¹</u>, Yuichiro YAMASHITA^{1,2}, Yukimi TANAKA², Takashi YAGI^{1,2}, Makoto KASHIWAGI¹, Junjun JIA³, Koichiro HATTORI², Naoyuki TAKETOSHI^{1,2}, Yuki OGUCHI¹, Yuzo SHIGESATO¹

¹Graduate School of Science & Engineering, Aoyama Gakuin University, ²National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), ³Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P27

Development of electrochromic thin films for thermal switching devices

<u>Koichi SAKATA</u>¹, Takashi YAGI^{1,2}, Yuichiro YAMASHITA^{1,2}, Makoto KASHIWAGI¹, Junjun JIA³, Naoyuki TAKETOSHI^{1,2}, Yuzo SHIGESATO¹

¹Graduate school of Science and Engineering, Aoyama Gakuin University, ²National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), ³Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P28

Approaches to fabricate the all-solid-state electrochromic windows

- $\frac{Yuki SHIRAKURA^{1}}{Junjun JIA^{2}, Yuzo SHIGESATO^{1}}$
- ¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P29

Electrochromic properties of doped IrO_2 films deposited by co-sputtering

Yuna SUGA¹, Makoto KASHIWAGI¹, Junjun JIA², Shin-ichi NAKAMURA³, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, ³Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University

G2-12-P30

Gas sensing properties of SnO_2 films deposited by rf magnetron sputtering

<u>Shuhei NISHIKAWA¹, Makoto KASHIWAGI¹, Junjun JIA², Akira NAKAMURA³, Yuzo SHIGESATO¹</u>

¹Graduate School of Science and Engineer, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, ³MITSUMI ELECTRIC CO., LTD

G2-12-P31

H₂ gas sensing properties of Al-doped ZnO films deposited by rf magnetron sputtering

<u>Hiroki SONE¹</u>, Shuhei NISHIKAWA¹, Makoto KASHIWAGI¹, Junjun JIA², Akira NAKAMURA³, Yuzo SHIGESATO¹ ¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, ³MITSUMI ELECTRIC CO., LTD.

G2-12-P32

Deposition of stoichiometric MgF₂ films by rf magnetron sputtering

Kohei OGURA¹, Makoto KASHIWAGI¹, Junjun JIA², Hironobu MACHINAGA³, Yuzo SHIGESATO¹ ¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University Building 61-414, ³Core Technology Research Center, Nitto Denko Corporation

G2-12-P33

Polytetrafluoroethylene (Teflon) films deposited by rf magnetron sputtering

<u>Yuri OTANI</u>¹, Makoto KASHIWAGI¹, Jia JUNJUN², Hironobu MACHINAGA³, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University Building 61-414, ³Core Technology Research Center, Nitto Denko Corporation

G2-12-P34

Self-powered Ultraviolet Photodetector Based on Cul/ a-IGZO Heterojunction

<u>Takahiro KONDO</u>, Yuumi KONDO, Yuuta TANIDA, Naoomi YAMADA Chubu University

G2-12-P35

Enhance Open-circuit Voltage of PbS Quantum Dot Solar Cells with Organic Surface Passivated ZnO Nanowires

Haibin WANG

The University of Tokyo

G2-12-P36

Gd and Gd-Mg alloy films deposited by sputtering for allsolid state switchable mirror devices

Kento TERASHIMA¹, Yuji SHITAYANAGI¹,

Makoto KASHIWAGI¹, Junjun JIA², Shin-ichi NAKAMURA³, Yuzo SHIGESATO¹

¹Graduate school of Science of Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, ³Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University

G2-12-P37

Study of MoO₃ thin film with low thermal conductivity

<u>Yuzuki AOKI</u>¹, Yuichiro YAMASHITA^{1,2}, Takashi YAGI^{1,2}, Junjun JIA^{1,3}, Makoto KASHIWAGI¹, Yuki OGUCHI¹, Naoyuki TAKETOSHI^{1,2}, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²National Metrology Institute of Japan (NMIJ), AIST, ³Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P38

Dielectric Function of Slightly-reduced Molybdenum Oxide (MoO_{3-x}) Films Deposited by Reactive Sputtering

<u>Shota CHOMEI</u>¹, Junjun JIA², Makoto KASHIWAGI¹, Yuzo SHIGESATO¹

¹Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sagamihara, Kanagawa, 252-5258 Japan., ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University Building 61-414, 3-4-1 Okubo, Shinjukuku, Tokyo, 169-8555 Japan.

G2-12-P39

Piezoelectric properties of the doped ZnO and AlNx films deposited by rf co-sputtering

Kentaro TANAKA¹, Ryota MAEDA¹, Junjun JIA², Makoto KASHIWAGI¹, Yuzo SHIGESATO¹ ¹Graduate School of Science and Engineering, Aoyama Gakuin University, ²Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University

G2-12-P40

Thin-Film Growth of Rocksalt-Type MgSnN2

Kenta MATSUURA, Naoomi YAMADA Chubu University

G2-12-P41

Growth of Halogen Doped n-Type SnS Single Crystals Using Self-Flux

 $\frac{\text{H. YANAGI}^1, \text{Y. IGUCHI}^1, \text{K. SATO}^1, \text{K. INOUE}^1, \text{I. SUZUKI}^2, \text{S. KAWANISHI}^2$

¹University of Yamanashi, ²Tohoku University

G2-12-P42

Highly Efficient Inverted OLED with Judiciously Designed Dielectric/Metal/Dielectric Transparent Electrodes

<u>Li-Wei CHEN</u>, Hao-Wu LIN

Department of Materials Science and Engineering, National Tsing Hua University

December 12, 2019 - December 12–13, 2019 – **Oral Session 4** Symposium G-3 Time 9:00-11:30 Room Miel-1 Perovskite and Metal Halide Materials Based Chairpersons Atsushi WAKAMIYA, Photovoltaics and Optoelectronics Masayuki CHIKAMATSU Organizers Opening talk Tsutomu MIYASAKA (Toin University of Yokohama) 9:00-9:05 Yoshihiko KANEMITSU (Kyoto University) Udo BACH (Monash University) Hyun Suk JUNG (Sungkyunkwan University) G3-12-I01 ► Invited 9:05-9:30 Hao-Wu LIN (National Tsing Hua University) Tetsuhiko MIYADERA (AIST) Progress of Lead Halide Perovskite Solar Cells and Next Hideo OHKITA (Kyoto University) Directions of Research by Compositional Engineering Taiho PARK (POSTECH) Tsutomu MIYASAKA Atsushi WAKAMIYA (Kyoto University) Toin University of Yokohama Sponsors G3-12-I02 ►Invited 9:30-9:55 Organic-Inorganic Halide Perovskites for Solar Fuel Production Jingshan LUO Your Dreams, Our Challenge Nankai University AGC Inc. G3-12-I03 ► Invited 9:55-10:20 ENECOAT Up-Scaling Strategies for Metal Halide Perovskite Solar Cells and Modules Enecoat Technologies Co., Ltd Luis Katsuya ONO, Yabing QI Okinawa Institute of Science and Technology Graduate FILIPREAM University FUJIPREAM CORPORATION G3-12-I04 ►Invited 10:20-10:45 Optical and Device Engineering in All Vacuum Deposited Perovskite Solar Cells and Artificial Retina Hao-Wu LIN Scientific HORIBA ,Ltd. National Tsing Hua University G3-12-005 10:45-11:00 Back-Contact Perovskite Solar Cells OIKE&Co.,Ltd. Xiongfeng LIN, Udo BACH OIKE&Co.,Ltd. Monash University G3-12-006 11:00-11:15 Light-Induced Performance Decrease in Perovskite Peccell Technologies Inc. **Photovoltaics** Peccell Technologies Inc. Eiji KOBAYASHI, Ryoto FUNAYAMA, Akito ENDO Kishu Giken Kogyo Co., Ltd. ΑΚΑΙΑ ΙΝΧ… visual Communication Technology G3-12-007 11:15-11:30 SAKATA INX CORPORATION Effect of Low Energy Ion Irradiation on the Optical and Electronic Properties of Perovskite Solar Cells Techno Smart Hironori OGATA^{1,2,3}, Tomoaki NISHIMURA², Changing Life with Coating Technology Yuki FUKAZAWA¹, Masato GOCHO¹, Kazunori ITO¹, Techno Smart Corp. Toshiya KOBAYASHI¹, Ryusuke UMEDA¹ ¹Grad.School Sci. Technol., Hosei University, ²Res. Center of Ion Beam Technology, Hosei University, ³Res. Center for Micro-Nano Technol., Hosei University TOKYO CHEMICAL INDUSTRY CO., LTD.

December 12, 2019	1
Oral Session 5	
Time 14:00–16:00 Room Miel-1	
Chairpersons Tetsuhiko MIYADERA, Takeru BESSHO	Cha
G3-12-I08 Invited 14:00-14:25	G3-12
Passivation and Interface Engineering of Lead Halide Perovskite for High Performance Solar Cells <u>Peng GAO</u> Fujian Institute of Research on the Structure of Matter	Stud Pero with Tak
G3-12-109 ► Invited 14:25-14:50	The
Surface Termination of the Solution-Processed	G3-12
CH₃NH₃Pbl₃ Perovskite Film <u>Hiroyuki YOSHIDA</u> , Abduheber MIRZEHMET Chiba University	Phot Cells <u>Hyu</u> Kyo
G3-12-I10 • Invited 14:50-15:15	
How to Use Synchrotron Soft X-Ray For Analysis of Perovskite Solar Cell <u>Seigo ITO</u>	G3-12 Prec Pero
University of Hyogo	<u>Mas</u> AIS
G3-12-011 15:15-15:30	G3-12
Open-Circuit Voltage in Tin-Based Perovskite Solar Cells <u>Hideo OHKITA</u> ¹ , Hyung Do KIM ¹ , Yongyoon CHO ^{1,2} ¹ Kyoto University, ² University of New South Wales	Invest the F Diffe
G3-12-012 15:30-15:45	Ryo
Defect and Trap Passivation of Tin Halide Perovskite with Lewis Base	Kisł
Muhammad Akmal KAMARUDIN ¹ , Daisuke HIROTANI ² , Kengo HAMADA ² , Kohei NISHIMURA ¹ , Qing SHEN ¹ , Taro TOYODA ¹ , Satoshi IIKUBO ² , Takashi MINEMOTO ³ , Kenji YOSHINO ⁴ , Shuzi HAYASE ¹ ¹ The University of Electro-Communications, ² Kyushu Institute of Technology, ³ Ritsumeikan University, ⁴ Miyazaki	G3-12 Facto Dime Yuk Sop
University	G3-12
G3-12-01315:45-16:00Tin-Based Perovskite Solar Cells using PrecursorMaterials Purified by Reducing AgentsTomoya NAKAMURA, Shinya YAKUMARU, Jiewei LIU, Taketo HANDA, Yoshihiko KANEMITSU, Richard MURDEY,	High Com Nanc <u>Ayu</u> ¹Toi
Atsushi WAKAMIYA Institute for Chemical Research, Kyoto University	

	—— December 1	2, 2019
Oral Session 6		
Time 16:30-18:30 Room Miel-1		
Chairperso	ns Hao-Wu LIN, She	igo ITO
G3-12-I14	►Invited	16:30-16:55
Perovskite with Mono	Properties and Les lithic Structure	o the Organometal Halide ss Hysteresis Photovoltaics
G3-12-I15	►Invited	16:55-17:20
Cells	<u>KIM</u> , Hideo OHKITA	ead-Based Perovskite Solar
G3-12-l16	► Invited	17:20-17:45
Perovskite	ntrol of Semicondu Solar Cells CHIKAMATSU	uctor Interfaces in
G3-12-017		17:45-18:00
the Perovs Different S Ryoto FUN	kite Films Fabricat	and Morphology of ed by Inkjet Prints with ASHI, Akito ENDO
G3-12-018		18:00-18:15
	al Perovskites	cal Orientation of Two-
G3-12-019		18:15-18:30
	lybridized Structure	or Based on a Metal with Perovskite

yumi ISHII^{1,2}, Ajay K. JENA¹, Tsutomu MIYASAKA¹ Toin University of Yokohama, ²JST, PRESTO

- December 13, 2019 -

Oral Session 8

Time 14:00-16:00 Room Miel-3

Chairpersons Hideo OHKITA, Akinori SAEKI

G3-13-I01 Invited

14:00-14:25

The Photophysics of the Disruptive Perovskites

Tze-Chien SUM

Nanyang Technological University

Symposium G

Symposium C

Symposium D Symposium E

Invited

G3-13-I03 Invited

Kazuhiro MARUMOTO

University of Tsukuba

14:50-15:15

14:25-14:50

Light-Induced Refractive Index Changes in Metal Halide Perovskites

Direct Observation of Charge Transfer at the Interface

between Perovskite and PEDOT:PSS Layers

Hirokazu TAHARA, Taketo HANDA, Yoshihiko KANEMITSU Kyoto University

G3-13-004

G3-13-I02

15:15-15:30

Ultrafast Interfacial Electron and Hole Transfer Dynamics from FAPbl₃ Perovskite Quantum Dots to Electron and Hole Transport Layers

Chao DING¹, Feng LIU¹, Yaohong ZHANG¹, Daisuke HIROTANI², Xing RIN¹, Yukiko KITABATAKE³, Taro TOYODA¹, Shuzi HAYASE^{1,2}, Takashi MINEMOTO⁴, Taizo MASUDA⁵, Kenji KATAYAMA³, Qing SHEN¹

¹Faculty of Informatics and Engineering. The University of Electro-Communications, ²Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, ³Department of Applied Chemistry, Chuo University, ⁴Department of Photonics, Ritsumeikan University, ⁵X-Frontier Division, Toyota Motor Corporation

G3-13-005

15:30-15:45

Enhanced Near-Infrared Emission from Cs(Pb/Sn)I₃ Quantum Dots by Sodium Doping

FENG LIU, CHAO DING, Yaohong ZHANG, Qing SHEN The University of Electro-Communications

G3-13-006

15:45-16:00

Non-Toxic Materials for Light-Emitting Diodes

Yu-Chiang CHAO

National Taiwan Normal University

December 13, 2019 **Oral Session 9**

Time 16:30-18:40 Room Miel-3

Chairpersons Yoshihiko KANEMITSU, Tsutomi MIYASAKA

G3-13-I07 Invited

16:30-16:55

Less-Defect Perovskite Quantum Dots: Synthesis, Optical Properties and Application to Optoelectronic Devices

Qing SHEN, Feng LIU, Yaohong ZHANG, Chao DING, Taro TOYODA, Shuzi HAYASE

The University of Electro-Communications

G3-13-I08 Invited

16:55-17:20

Anion Exchange Perovskite Quantum-Dots for Highly Efficient Light-Emitting-Devices

Takayuki CHIBA Yamagata University

G3-13-I09 Invited

Unique Optoelectronic Properties of Pb/Sn Perovskites Akinori SAEKI Osaka University

G3-13-I10 Invited 17:45-18:10

Excitonic Properties of CH₃NH₃PbX₃ [X = I, Br, Cl] Lead Halide Perovskites Revealed by Magnetoreflectance Spectroscopy

Yasuhiro YAMADA¹, Hirofumi MINO¹, Kenichi OTO¹, Yoshihiko KANEMITSU² ¹Chiba University, ²Kyoto University

G3-13-011

18:10-18:25 Mechanism of Efficient anti-Stokes Photoluminescence

in Lead-Halide Perovskite Single Crystals Takumi YAMADA, Yoshihiko KANEMITSU Institute for Chemical Research, Kyoto University

G3-13-012

18:25-18:40

Polarization-Resolved Optical Spectroscopy in Lead Halide Perovskite CH₃NH₃PbX₃ [X = I, Br] Single Crystals Nanako IGARASHI¹, Shunichi SAKAGUCHI¹, Kenichi OTO¹, Yoshihiko KANEMITSU², Yasuhiro YAMADA¹

¹Chiba University, ²Kyoto University

December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

G3-13-P01

Mixed-Organic-Cation Perovskite Solar Cells Fabricated by All-Vacuum Deposition

LIN YANG, CHIEN-YU CHEN, HAO-WU LIN National Tsing Hua University

G3-13-P02

High Performance Cesium Lead Halide Perovskite Quantum Dots Fabricated by Hot Spray Synthesis Technique

Bo-Wei HSU, Yung-Tang CHUANG, Hao-Wu LIN Materials Science and Engineering/National Tsing Hua University, Taiwan

G3-13-P03

Metal Halide Based Artificial Synaptic Devices with Multi-Tunable-States

Wei-Chun WANG, Li-Wei CHEN, Hao-Wu LIN Department of Materials Science and Engineering, National Tsing Hua University

G3-13-P04

Efficient Hole Transporting Layers for All Vacuum Processed Perovskite Solar Cell

Dan WANG, Hao-Wu LIN

Department of Materials Science and Engineering, National Tsing Hua University

G3-13-P05

Perovskite Solar Cells: Global and Local Structure

<u>Jintara PADCHASRI¹</u>, Pinit KIDKHUNTHOD², Taras KOLODIAZHNYI³, Rattikorn YIMNIRUN⁴, Saroj RUJIRAWAT¹

¹Suranaree University of Technology, ²Synchrotron Light Research Institute, ³National Institute for Materials Science, ⁴Vidyasirimedhi Institute of Science and Technology

G3-13-P06

Synthesis and Properties of Hybrid Perovskite CH₂NH₂Pbl₂,Cl, Solar Cell Materials

<u>Phitsamai KAMONPHA</u>, Saroj RUJIRAWAT Reaserch Network NANOTEC-SUT on Advanced Nanomaterials and Characterization, School of Physics, Institute of Science, Suranaree University of Technology

G3-13-P07

Molecular Dynamics in the Hybrid Organic-Inorganic Perovskite $MAPbI_3$ Probed by Muon Spin Relaxation Technique

<u>Akihiro KODA</u>¹, Masatoshi HIRAISHI¹, Hirotaka OKABE¹, Ryosuke KADONO¹, Seung-Hun LEE², Joshua J. CHOI², Katelyn A. DAGNALL² ¹KEK, ²University of Virginia

G3-13-P08

Influence of the Different Substrates on Spiro-OMeTAD Layer Orientation

Hiroyuki MAEKAWA University of Hyogo

G3-13-P09

Evaluation of Thermal Durability and Radiation Resistance of MA-Free Perovskite Solar Cells

Yuma NAGANO University of Hyogo

G3-13-P10

Improving V_{oc} and Stabilizing Black Phase for Allinorganic CsPbX₃ Perovskite Solar Cells

Zhanglin GUO Toin University of Yokohama

G3-13-P11

Evaluation of Durability of Perovskite Solar Cells with Mixed Cations and Halide Anions

Yuki FUKAZAWA, Masato GOCHO, Kazunori ITO, Toshiya KOBAYASHI, Ryusuke UMEDA, Hironori OGATA Grad. Sch. Sci. and Engin., Hosei Univ.

G3-13-P12

Fabrication and Properties of Inverted Perovskite Solar Cells with Surface-Treated Nickel Oxide Films

Toshiya KOBAYASHI¹, Masato GOCHO¹, Kazunori ITO¹, Yuki FUKAZAWA¹, Ryusuke UMEDA¹, Hironori OGATA^{1,2,3} ¹Graduate School of Science and Engineering, Hosei University, ²Dept. Chem.Sci. and Technol., Hosei University, ³Research Center for Micro-Nano Technology, Hosei University

G3-13-P13

Withdrawal

G3-13-P14

Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons: Synthesis and Application for Perovskite Solar Cells

<u>Minh Anh TRUONG</u>, Richard MURDEY, Atsushi WAKAMIYA Institute for Chemical Research, Kyoto University

G3-13-P15

Observation of High-Order Harmonic Generation from Hybrid Lead Halide Perovskites

<u>Hideki HIRORI</u>¹, Peiyu XIA², Yasushi SHINOHARA², Tomohito OTOBE³, Yasuyuki SANARI¹, Hirokazu TAHARA¹, Nobuhisa ISHII², Jiro ITATANI², Yoshihiko KANEMITSU¹ ¹Kyoto University, ²University of Tokyo, ³QST

G3-13-P16

Crystal Growth Dynamics of $CH_3NH_3PbI_3$ in Vacuum Deposition Process

Tetsuhiko MIYADERA¹, Yuto AUCHI^{1,2}, Kohei YAMAMOTO¹, Noboru OHASHI¹, Tomoyuki KOGANEZAWA³, Hiroyuki YAGUCHI³, Yuji YOSHIDA¹, Masayuki CHIKAMATSU¹ ¹National Institute of Advanced Industrial Science and Technology, ²Saitama University, ³Japan Synchrotron Radiation Research Institute

G3-13-P17

Anion-Exchange Blue Perovskite Quantum Dots LED with Metal Halide

<u>Jun SATO</u> Yamagata University

G3-13-P18

High Efficiency of Blue Perovskite Quantum Dots LED Using Adamantane Additive

<u>Shota ISHIKAWA</u> Yamagata University

G3-13-P19

Single Exciton Dynamics in Lead Halide Perovskite Nanocrystals: Single Dot Spectroscopy

Yoshihiko KANEMITSU, Sojiro MASADA, Hirokazu TAHARA, Masaki SARUYAMA, Tokuhisa KAWAWAKI, Ryota SATO, Toshiharu TERANISHI

Institute for Chemical Research, Kyoto University

G3-13-P20

AFM Nano-Processing in Lead Halide Perovskites

<u>Keisuke KUMAGAI</u>¹, Shunichi SAKAGUCHI¹, Kenichi OTO¹, Yoshihiko KANEMITSU², Yasuhiro YAMADA¹ ¹Chiba University, ²Kyoto University

-215-

- December 12–13, 2019 – Symposium G-4

Plasmonic Materials: from Fundamentals to Applications

[Organizers]

Toshiharu TERANISHI (Kyoto University) Tatsuya TSUKUDA (The University of Tokyo) Jwa-Min NAM (Seoul National University) Jill E. MILLSTONE (University of Pittsburgh) Keiko TAWA (Kwansei Gakuin University)

December 12, 2019

Oral Session 5

Time 14:00-16:00 Room Miel-5

Chairperson Toshiharu TERANISHI

G4-12-I01 ► Invited

14:00-14:30

Hybrid Nanomaterials for Plasmon-Enhanced Fluorescence Spectroscopy Biosensors

Jakub DOSTALEK

AIT-Austrian Institute of Technology

G4-12-I02 ► Invited

14:30-15:00

Application of a Plasmonic Chip to the Brighter Fluorescence Microscopy

<u>Keiko TAWA</u> Kwansei Gakuin University

G4-12-I03 Invited

15:00-15:30

Assembling Activatable Plasmonic Nanoantennas in

Live Cells for Targeted SERS and Photoacoustic Imaging Fabien PINAUD¹, Tugba KOKER¹, Nathalie TANG²,

Chao TIAN³, Wei ZHANG³, Xueding WANG³, Richard MARTEL² ¹University of Southern California, ²University of Montréal, ³University of Michigan

G4-12-I04 ► Invited

15:30-16:00

Free-Standing 2D Plasmonic Nanoassemblies <u>Wenlong CHENG</u>

Monash University

December 12, 2019

Oral Session 6

Time 16:30-18:05 Room Miel-5

Chairperson Tatsuya TSUKUDA

G4-12-K05 ► Keynote

16:30-17:05

Enhanced Water Splitting under Modal Strong Coupling Conditions

Hiroaki MISAWA^{1,2}

¹Hokkaido University, ²National Chiao Tung University

G4-12-I06	►Invited	17:05-17:35
Biomedical Jwa-Min N		ering for
Seoul Nati	onal University	
G4-12-I07	► Invited	17:35-18:05
	-Zero Wavevector Electronic Excita Surface Plasmon	ation by
Hokkaido l		
	December 12, 0010	
	December 13, 2019 Oral Session 8	
	ime 14:00–16:05 Room Work-4	
Chairperso	n Keiko TAWA	
G4-13-I01	▶ Invited	14:00-14:30
•	nonic Materials and Structures for E OSHIKAWA, Eiichi TAMIYA versity	Bio Sensing
G4-13-I02	▶ Invited	14:30-15:00
Colloidal P	lasmonic Metal Nanocrystals	
<u>Jianfang V</u> The Chines	<u>VANG</u> se University of Hong Kong	
G4-13-I03	► Invited	15:00-15:30
Hiromi OK	ontrol, Impact of Chiral Plasmons AMOTO or Molecular Science	
G4-13-K04	►Keynote	15:30-16:05
Nanostruct Alexey KR/ Pan WANC	on Effects in Electrically-Driven Pla tures: Light, Sensing and Artificial ASAVIN, Anatoly ZAYATS, Yunlu JIAN G, Mazhar NASIR ege London	Synapses
	-9	

December 13, 2019

Oral Session 9

Time 16:30-18:00 Room Work-4

Chairperson Jwa-Min NAM

G4-13-I05 Invited

16:30-17:00

Plasmon-Boosted Cooperative Effect in Quantum-Emitter Assembly Hajime ISHIHARA Osaka University

Symposium G

G4-13-I06 Invited

17:00-17:30

Plasmonics-Assisted Metasurfaces and Structured Interfaces

Yang CHEN¹, Cheng-Wei QIU² ¹NUS Suzhou Research Institute, ²National University of Singapore

G4-13-I07 ► Invited

17:30-18:00

Alternative Plasmonic Materials for SERS and Metasurface Applications

Shangjr GWO Academia Sinica

December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

G4-13-P01

Emergence of Plasmonic Behavior in Free Silver Clusters, Ag_N⁺, Studied by Photofragmentation Spectroscopy in the Size Range up to N = 70

Takuva HORIO¹. Shuhei FUJIMOTO¹. Satoshi KONO¹. Masashi ARAKAWA¹, Tomokazu YASUIKE^{2,3}, Akira TERASAKI¹ ¹Department of Chemistry, Faculty of Science, Kyushu University, ²Department of Liberal Arts, The Open University of Japan, ³ESICB, Kyoto University

G4-13-P02

Two-photon Emission Detection of Quantum Dots with the Silver Plasmonic Chip

Yuki OMURA, Keiko TAWA Kwansei Gakuin University

G4-13-P03

Fluorescence Detection of a Single Exosome with a Bull's Eye Plasmonic Chip under Microscope

Eri FUJIMOTO, Keiko TAWA Kwansei Gakuin University

G4-13-P04

Evaluation of Labeled Molecules in Immunosensor with an Epi-Fluorescence Microscope

Makiko YOSHIDA, Keiko TAWA Kwansei Gakuin University

G4-13-P05

Graphene Oxide Film Isolated Raman Spectroscopy for Subnano Particles Analysis and Application

Yuansen TANG¹, Akiyoshi KUZUME², Kimihisa YAMAMOTO^{1,2} ¹Laboratory for Chemistry and Life science, Institute of Innovative Research, Tokyo Institute of Technology, ²JST-ERATO in Tokyo Institute of Technology

G4-13-P06

Stabilization of Copper Nanoparticle for Novel Red Overglaze

Shohei SHIOMI¹, Yuki OKAZAKI¹, Hajime TAGUCHI¹, Eiichiro MATSUBARA²

¹Kyoto Municipal Institute of Industrial Technology and Culture, ²Kyoto University

G4-13-P07

Toroidal Plasmons of Multilayer Metal Nanorings

T. Thuy TRINH, Toshiharu TERANISHI

Institute for Chemical Research, Kyoto University

G4-13-P08

Microspectroscopic Analysis of a Fluorescence Enhancement by the Plasmonic Chip

Hinako CHIDA, Keiko TAWA Kwansei Gakuin University

G4-13-P09

Extraordinary Field Enhancement at TiO₂ Nanogap: Plasmon-Free Enhancement up to 2000-Fold and Its High Reproductivity

Kaito HANATANI¹, Masanori SAKAMOTO¹, Kumi YOSHIHARA¹, Ken-ichi SAITOW²

¹Department of Chemistry, Graduate school of science, Hiroshima Univ., ²N-BARD, Hiroshima Univ.

G4-13-P10

Localized Surface Plasmon Resonance of Ultrathin Gold Nanorods

Ryo TAKAHATA^{1,2}, Tatsuya TSUKUDA¹ ¹The University of Tokyo, ²Kyoto University

G4-13-P11

Colloidal Au Nanocups with Magnetic Plasmon Resonance

Han ZHANG, Jianfang WANG The Chinese University of Hong Kong

G4-13-P12

Synergistically Improvement of the Plasmonic Enhancement Effect Using by Carrier-Selective Blocking Laver

Tokuhisa KAWAWAKI¹, Tatsuo NAKAGAWA³, Masanori SAKAMOTO², Toshiharu TERANISHI² ¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, ²Institute for Chemical Research, Kyoto University, ³Optical Instruments Division, Unisoku Co., Ltd.

G4-13-P13

Coloration of Gold Leaf using Gold Nanoparticles

Kazuhiro SHIMADA¹, Kimihiro NUMANO², Shinya MAENOSONO²

¹Industrial Research Institute of Ishikawa, ²School of Materials Science, Japan Advanced Institute of Science and Technology

Symposium G

G4-13-P14

Theory of Optical Response Measurement of Single Nanoparticles by Photoinduced Force Microscopy

Hidemasa YAMANE¹, Nobuhiko YOKOSHI¹, Hajime ISHIHARA^{1,2}

¹Osaka Prefecture University, ²Osaka University

G4-13-P15

Chiral Optical Near-Fields Created by Plasmonic Nanostructures

<u>Shun HASHIYADA</u>¹, Tetsuya NARUSHIMA², Hiromi OKAMOTO²

¹Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, ²Institute for Molecular Science and The Graduate University for Advanced Studies (Sokendai)

G4-13-P16

Two-Photon Fluorescence of Rhodamine 6G and Eudiketonate Complex Enhanced by Silver Nanoprisms

Janice B. RABOR, Koki KAWAMURA, <u>Yasuro NIIDOME</u> Kagoshima University

G4-13-P17

Developments of Nano-Structured Semi-Conductor-Assisted (NASSCA) Optical Tweezers toward Manipulation of Plasmonic Nanoparticles

<u>Sawa KOMOTO</u>¹, Tatsuya SHOJI¹, Saulius JUODKAZIS², Yasuyuki TSUBOI¹

¹Osaka City University, ²Swinburne University of Technology

G4-13-P18

Size Selective Optical Trapping of Polystyrene Nanoparticles using Plasmonic and Non-plasmonic nanostructures

<u>Sayaka HASHIMOTO</u>¹, Tatsuya SHOJI¹, Saulius JUODKAZIS², Yasuyuki TSUBOI¹

¹Osaka City University, ²Swinburne University of Techology

G4-13-P19

Ligand Effect of Porphyrin-Protected Gold Clusters and Nanoparticles in the Electrochemical Hydrogen Evolution Reaction

Daichi EGUCHI¹, Masanori SAKAMOTO², Toshiharu TERANISHI² ¹Kwansei Gakuin University, ²Institute for Chemical Research, Kyoto University

G4-13-P20

Promoting Electrocatalytic Oxygen Reduction Reaction of Octahedral Au@Pt Core-Shell Nanoparticles by Surface Plasmon Excitation

<u>Tatsuya KAMEYAMA</u>, Kentaro SATO, Tsukasa TORIMOTO Nagoya University

G4-13-P21

Plasmonic and Non-Plasmonic Optical Trapping of Thermoresponsive Polymer Chains Using Nanostructured Solid Substrates

Tatsuya NAGAI¹, Tatsuya SHOJI¹, Denver LINKLATER², Saulius JUODKAZIS², Yasuyuki TSUBOI¹ ¹Osaka City University, ²Swinburne University of Technology

G4-13-P22

Novel Latex Particles Decorated with Au or Pt Nanoparticles as Probes for Lateral Flow Immunochromatographic Strips with Enhanced Sensitivity

<u>Yasufumi MATSUMURA</u>¹, Yasushi ENOMOTO¹, Mari TAKAHASHI², Shinya MAENOSONO² ¹NIPPON STEEL Chemical & Material Co.,Ltd., ²School of Materials Science, JAIST

G4-13-P23

A Study of Colorimetric Biosensor by use of Plasmonic Full Color

<u>Yuichiro MIYAKE</u>¹, Sou RYUZAKI¹, Yusuke ARIMA¹, Koichi OKAMOTO², Kaoru TAMADA¹ ¹Kyushu University, ²Osaka Prefecture University

G4-13-P24

Transferrin-Modified Magnetic-Plasmonic Hybrid Nanoparticles Designed for Organelle Targeting

Mari TAKAHASHI, Youren WANG, Kazuaki MATSUMURA, Shinya MAENOSONO

School of Materials Science Japan Advanced Institute of Science and Technology

G4-13-P25

Plasmonic Chiroptical Responses of 3D Continuous Chiral Nanoparticles

<u>Hyo-Yong AHN</u>^{1,2}, Shun HASHIYADA¹, Tetsuya NARUSHIMA^{1,3}, Hye-Eun LEE², Ki Tae NAM², Hiromi OKAMOTO^{1,3} ¹Institute for Molecular Science, Okazaki, Japan, ²Seoul National University, Seoul, Korea, ³The Graduate University for Advanced Studies, Okazaki, Japan

G4-13-P26

Chemical Induced Permittivity-Change (CIP) Effects for Metal Nanoparticles

<u>S. RYUZAKI</u>^{1,2}, N. SAITO¹, Y. NOGUCHI³, Y. TSUJI¹, K. YOSHIZAWA¹, K. OKAMOTO⁴, K. TAMADA¹ ¹Kyushu University, ²PRESTO, JST, ³Meiji University, ⁴Osaka Prefecture University

G4-13-P27

Coherent Acoustic Phonon Vibration and Phonon Beat in Gold Nanopolyhedrons

Li WANG¹, Shohei TAKEDA¹, Masanori SAKAMOTO², Toshiharu TERANISHI², <u>Naoto TAMAI</u>¹

¹Kwansei Gakuin University, ²Institute for Chemical Research, Kyoto University

G4-13-P28

Isotopic Hydrogen Evolution Reactions Driven by Plasmon-Induced Charge Transfer

<u>Hiro MINAMIMOTO</u>, Daiki SATO, Kei MURAKOSHI Hokkaido University

G4-13-P29

Electrochemical Control of the Strong Coupling State between Dye Molecules and Surface Lattice Resonance

<u>Shunpei OIKAWA</u>, Hiro MINAMIMOTO, Kei MURAKOSHI Hokkaido University

G4-13-P30

Control of Emission photon Statistics of Single Quantum Dots Using Plasmonic Nanostructures

Yoshua Albert DARMAWAN, Takaki NAKAGAWA, Mitsuaki YAMAUCHI, <u>Sadahiro MASUO</u> Kwansei Gakuin University

G4-13-P31

Near-Field Optical Imaging of Plasmon Modes Induced in Two-Dimensional Gold Nanoplates

Keisuke IMAEDA, Takuya MATSUURA, Seiju HASEGAWA, Kohei IMURA

Waseda University

G4-13-P32

Ionization Assisting Ability of Plasmonic Particles and Magnetic Nanoparticles as Matrices for Mass Spectrometry

Kota AOKI, Sota HAMADA, Shota MORIMOTO, Kouhei KANDA, Akito OSHIMA, Yuko ICHIYANAGI Yokohama National University

G4-13-P33

Plasmon Enhanced Molecular Fluorescence Near Single Gold Mesoplates

<u>Seiju HASEGAWA</u>, Keisuke IMAEDA, Kohei IMURA Waseda University

G4-13-P34

Optical Coupling of Short-range Ordered Nanopores Through Surface Plasmons

<u>Dung Thi VU</u>, Takumi SANNOMIYA Tokyo Institute of Technology

G4-13-P35

Wide Controllability of Localized Surface Plasmon Resonance Wavelength for Au-Ag Nanorings from Visible to Near-infrared Light Region

Kosuke SASAMOTO, Tatsuya KAMEYAMA, Tsukasa TORIMOTO Graduate School of Engineering, Nagoya University

G4-13-P36

Alchemy for Plasmonics: Coinage Metal-Free Visible-Plasmonic Nanoalloys

<u>Ryota SATO</u>¹, Kenji IIDA², Tokuhisa KAWAWAKI³, Katsuyuki NOBUSADA², Toshiharu TERANISHI¹ ¹Kyoto University, ²Institute for Molecular Science, ³Tokyo University of Science

G5-13-007

15:55-16:10

Synchrotron Radiation X-ray Diffraction Study on $\rm Co_{50}Pt_{50}$ Thin Films Annealed by Rapid Thermal Annealing

<u>Ryo TOYAMA</u>¹, Shiro KAWACHI^{1,2}, Soshi IIMURA¹, Jun-ichi YAMAURA^{1,2}, Youichi MURAKAMI^{1,2}, Hideo HOSONO¹, Yutaka MAJIMA¹

¹Tokyo Institute of Technology, ²KEK

- December 13, 2019 -

Oral Session 9

Time 16:30-18:20 Room Work-8

Chairperson Takeshi WATANABE

G5-13-I08 ► Invited

16:30-16:50

Synchrotron x-ray characterization of highly functionalized catalysts and devices for a hydrogen society

Hideto IMAI NISSAN ARC Ltd.

G5-13-I09 Invited

16:50-17:10

Spectroscopy Measurements in Home lab Environment: HAXPES and Ambient Pressure for the Future

Susanna ERIKSSON Scienta Omicron

G5-13-I10 ► Invited

17:10-17:30

Operando and *in-situ* Analyses of Materials for Polymer Electrolyte Fuel Cells Junji INUKAI

University of Yamanashi

G5-13-I11 ► Invited

17:30-17:50

In situ X-ray Raman Scattering Spectroscopy of a Graphite Electrode for Li-ion Batteries

Takamasa NONAKA, Hiroyuki KAWAURA, Yoshinari MAKIMURA, Yusaku F. NISHIMURA, Kazuhiko DOHMAE Toyota Central R&D Labs., Inc.

G5-13-012

17:50-18:05

Distinct Electronic Character and Selective Control of Localized vs. Delocalized Carriers at (001) Surface of Anatase ${\rm TiO}_2$

<u>Jun FUJII</u>¹, Chiara BIGI^{1,2} ¹CNR-IOM, ²Università degli Studi di Milano

G5-13-013

18:05-18:20

Synchrotron-based X-ray Absorptions Studies Diamond-like Carbon Films by Ar/CH_4 flow rates Dependence of PECVD Technique

<u>Thanun CHUNJAEMSRI</u>¹, Narong CHANLEK^{1,2}, Pinit KIDKHUNTHOD^{1,2}, Hideki NAKAJIMA², Sarayut TUNMEE², Rattikorn YIMNIRUN³, Saroj RUJIRAWAT¹

¹Suranaree University of Technology, ²Synchrotron Light Research Institute, ³Vidyasirimedhi Institute of Science and Technology December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

G5-13-P01

Transmission Soft X-Ray Absorption Spectroscopy on Thin Films for Li-Ion Battery

<u>Koji HORIBA</u>¹, Miho KITAMURA¹, Kazunori NISHIO², Ryota SHIMIZU², Taro HITOSUGI¹, Hiroshi KUMIGASHIRA^{1,3} ¹Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, ²School of Materials and Chemical Technology, Tokyo Institute of Technology, ³Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

G5-13-P02

Laboratory Scale Hard X-ray Photoelectron Spectroscopy in Comparison with SPring-8

<u>Tappei NISHIHARA</u>¹, Hiroki KANAI¹, Takefumi KAMIOKA¹, Toshiro OKAWA², Ichiro HIROSAWA³, Satoshi YASUNO³, Koji USUDA⁴

¹Meiji University, ²Scientaomicron, ³JASRI, ⁴Toshiba Memori Co.

G5-13-P03

Characterization of Au/Ni Ohmic Contact on p-GaN Using Hard X-ray Photoelectron Spectroscopy and 2D-Xray Diffraction

Satoshi YASUNO¹, Tomoyuki KOGANEZAWA¹, So KUROYANAGI², Naotaka IWATA²

¹Japan Synchrotron Radiation Research Institute, ²Toyota Technological Institute

G5-13-P04

Development of instrumentation for operando hard X-ray photoemission spectroscopy of organic thin film transistors

Takeshi WATANABE¹, Satoshi YASUNO¹,

Noriyuki YOSHIMOTO², Ichiro HIROSAWA¹ ¹Japan Synchrotron Radiation Research Institute, ²Iwate

University

G5-13-P05

Quantitative analysis of energy loss process for the core level intensities in Hard X-ray Photoemission

Takehisa KONISHI¹, Shigenori UEDA², <u>Toyohiko KINOSHITA³</u> ¹Department of Chemistry, Chiba University, ²Synchrotron X-ray Group, National Institute for Materials Science (NIMS), ³Japan Synchrotron Radiation Research Institute (JASRI)

G5-13-P06

XPS and Reflectivity Investigation of Silicon Oxide Thin Film Sputtered on Aluminum Layer

Ekachai CHONGSEREECHAROEN Suranaree University of Technology

G5-13-P07

Non-distractive Characterization of Thin Amorphous Film on Substrate by Grazing-incidence X-ray Scattering Ichiro HIROSAWA, Satoshi YASUNO Japan Synchrotron Radiation Research Institute

G5-13-P08

Thickness-Dependent Properties of Ultrathin Diamondlike Carbon Films Prepared by Filtered Cathodic Vacuum Arc.

Warintorn CHATARAT Suranaree University of Technology

G5-13-P09

Stabilization of Charge Order Structure in Stoichiometric $YbFe_2O_4$

<u>Kosuke FUJIWARA^{1,2}</u>, Pierre-Eymeric JANOLIN³, Stéphane GRENIER⁴, Jean-Michel KIAT³, Naoshi IKEDA² ¹Japan Synchrotron Radiation Research Institute(JASRI), ²Graduate School of Natural Science and Technology, Okayama University, ³CentraleSupélec, ⁴Institut NÉEL

G5-13-P10

Evaluation of Temperature and Ge Concentration Dependence of EXAFS Oscillations in SiGe thin Films

<u>Kazutoshi YOSHIOKA</u>¹, Ryo YOKOGAWA^{1,2}, Yuki TAKAHASHI¹, Haruki TAKEUCHI¹, Ichiro HIROSAWA³, Takeshi WATANABE³, Atsushi OGURA¹

¹Meiji University, ²JSPS Research Fellow DC, ³Japan Synchrotron Radiation Research Institute (JASRI)

Cluster H

Green Technology and Processing

Symposium

- H-1 Advanced Water Science and Technology
- H-2 Plasma-Based Synthesis, Processing and Characterization of Materials for Energy and Environment
- H-3 5th E&J BLS Advanced Functional Oxides: Processing, Characterization and Devices
- H-4 A3+ Lead-free Piezoelectric Materials and Applications
- H-5 Intelligent Material Processes with Low Environmental Load and Energy Consumption

December 11, 2019 December 11-12, 2019 -Oral Session 1 Symposium H-1 Time 9:00-11:45 Room Miel-3 Advanced Water Science and Technology Chairpersons Katsuya TESHIMA, Norifumi ISU, Osamu TAKAI Organizers Osamu TAKAI (Kanto Gakuin University) Katsuya TESHIMA (Shinshu University) Opening Talk: Osamu Takai 9:00-9:05 [Sponsors] H1-11-I01 ► Invited Progress in Solution Plasma Research Osamu TAKAI Link to Good Living LIXIL Corporation Materials and Surface Engineering Research Institute, Kanto Gakuin University H1-11-I02 Invited Cleansui Antibacterial Ceramics and Uncertainty of Antibacterial Test Method Mitsubishi Chemical Cleansui Corporation Norifumi ISU LIXIL Corp. H1-11-I03 ► Invited ORC MANUFACTURING CO., LTD H₂O₂ Synthesis Using 3D Integrated Micro Solution Plasma and Improvement of Its Efficiency by Combining 🕀 SHIMADZU with Ion Exchange Resin Excellence in Science Tatsuru SHIRAFUJI, Shoma MIYAMOTO, Jun-Seok OH Osaka City University Shimadzu CorporationTakagi Co., Ltd H1-11-I04 Invited 結晶の未来を拓く SHINKOSHA Atmospheric-pressure Plasma Reactor Generated Plasma-activated Water SHINKOSHA Co., LTD Jun-Seok OH, Yusuke SASAKI, Soshi IMAI, Tatsuru SHIRAFUJI Osaka City University H1-11-I05 Invited 水をデザインする。 Selective Permeation of Solutes through Microporous Takagi Co., Ltd Polymer Membranes prepared by Chemical Vapor Deposition #式會社 外 村 射 作 所 Mutsumi KIMURA Shinshu University Takemura Seisakusyo Co., Ltd H1-11-K06 • Keynote TOCLAS A Perspective on Heterogeneous Integrated Edge Devices for Internet of Things (IOT) to Enable Green TOCLAS CORPORATION **Energy Water Nexus**

G.P. LI University of California, Irvine 9:05-9:25

9:25-9:45

9:45-10:05

10:05-10:25

10:25-10:45

10:45-11:15

Symposium H

ΓΟRΑΥ΄

Toray Engineering Co.,Ltd. Toray Engineering Co.Ltd

11:15-11:30

Solution Plasma Process: a novel method for wastewater treatment

MONGKOL TIPPLOOK¹, HYMIN KIM², SANGWOO CHAE^{1,4}, PHUWADEJ PORNAROONTHAM^{1,4}, NAGAHIRO SAITO^{1,3,4,5} ¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²LG Chem, Ltd., ³Conjoint Research Laboratory in Nagoya University, Shinshu University, ⁴Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁵Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H1-11-008

11:30-11:45

The Hardness of Single Crystal Sapphire under **Controlled High Temperature**

Toshiro OKAWA^{1,2}, Katsuhiko TASHIRO^{2,3}, Hideo HONMA^{2,3}, Osamu TAKAI^{2,}

¹ScientaOmicron Inc., ²Materials & Surface Engineering Research Institute, Kanto Gakuin University, ³Research Advancement and Management Organization, Kanto Gakuin University

- December 11, 2019 -

Oral Session 3

Time 16:30-18:30 Room Miel-3

Chairpersons Chiaki TERASHIMA, Masahiro MOTOSUKE

H1-11-I09 Invited

Blood Flow Characterization for Advanced Diagnostics Masahiro MOTOSUKE

Tokyo University of Science

H1-11-I10 ► Invited

16:50-17:10

Development of Polymer Nano-Film Synthesized on Self-Assembled Phospholipid Layer Fabricated by Plasma-Assisted Method

Shin-ichi KONDO¹, Yasushi SASAI¹, Naoki DOI¹, Yukinori YAMAUCHI², Masayuki KUZUYA³

¹Gifu Pharmaceutical University, ²College of Pharmaceutical Sciences, Matsuyama University, ³Faculty of Human Welfare, Chubu Gakuin University

H1-11-I11 ▶Invited

17:10-17:30

Preparation of Corrosion Resistant Composite Hydroxide Films on Magnesium Alloys by Steam Coating

Takahiro ISHIZAKI, Tomohiro MIYASHITA, Momo INAMURA, Yuma NAGAHIMA

Shibaura Institute of Technology

H1-11-I12 ►Invited

17:30-17:50

A Superhydrophilic Property and Antireflectivity of a Hierarchical Nanoporous Layer Glass

Takuya FUJIMA^{1,2}, Erika TABATA¹, Takumi ITO¹, Yuki USHIODA¹

¹Department of Mechanical Engineering, Tokyo City University, ²Advanced Research Laboratories, Tokyo City University

H1-11-I13 ►Invited

17:50-18:10

18:10-18:30

Photofuel Cells Using Porous Titania Anodes

Hiromasa NISHIKIORI Shinshu University

H1-11-I14 ►Invited

Direct Pattern Plating on UV-modified Resins by **Electroless Plating Method**

Yoshio HORIUCHI¹, Michinori TAKAGI², Mikio USHIYAMA³, Manabu YASUI³, Mitsuhiro WATANABE¹, Osamu TAKAI¹, Hideo HONMA

¹Materials and Surface Engineering Research Institute, Kanto Gakuin University, ²Azuma, ³Kanagawa Institute of Industrial Science and Technology

December 12, 2019

Oral Session 4

Time 9:00-12:25 Room Miel-3

Chairpersons Tomonaga UENO, Tomohito SUDARE, Yosuke KAGESHIMA

H1-12-I01 Invited

9:00-9:20

9:20-9:40

9:40-10:00

Enhanced Photoelectrochemical Water Reduction on the Photocathode Modified with Pt-Loaded TiO₂ Nanoparticles

Yosuke KAGESHIMA Shinshu University

H1-12-I02 ► Invited

Tunable Heteroatom-doped Carbon as Economic and Efficient Oxygen Evolution Reaction Catalysts in Water Electrolysis

Oi Lun Helena Ll, Wenui YAO, Jihoon KIM Pusan National University

H1-12-I03 ►Invited

Solar light-driven Photocatalysis/Photoelectrocatalysis Water Pollutant Treatment: Pathways to Circular Economy

Sudhagar PITCHAIMUTHU Swansea University

H1-12-I04 ►Invited

High Speed Nickel plating using Watt Nickel plating solution

Yasushi UMEDA

Kanto Gakuin University Materials & Surface Engineering **Research Institute**

H1-12-I05 Invited 10:20-10:40

10:00-10:20

Efficient water purification by synergetic effect on mesoporous TiO₂/BDD hybrid electrode

Norihiro SUZUKI¹, Akihiro OKAZAKI², Aiga HARA¹, Yuiri HIRANO¹, Yukihiro NAKABAYASHI¹, Nitish ROY¹, Haruo KURIYAMA², Izumi SERIZAWA², Chiaki TERASHIMA¹, Kazuya NAKATA¹, Ken-ichi KATSUMATA¹, Takeshi KONDO¹, Makoto YUASA¹, Akira FUJISHIMA¹

¹Tokyo University of Science, ²ORC Manufacturing Co., Ltd

H1-12-I06 ► Invited

10:40-11:00

Deposition of Copper on Glass Substrates Using a Titanium Oxide Adhesion Layer

<u>Christopher E. J. CORDONIER</u>, Kyohei OKABE, Hideo HONMA Kanto Gakuin University, Materials & Surface Engineering Research Institute

H1-12-I07 Invited

11:00-11:20

Adsorption-induced Electrochromic Phenomenon of Indium-nitride Films in Aqueous Solutions

Yasushi INOUE

Chiba Institute of Technology

H1-12-I08 Invited

11:20-11:40

Aqueous Solution-based Self-Assembly of 3D Carbon Nanotube Network For High Energy Density Lithium Ion Batteries

<u>Nobuyuki ZETTSU</u>, Dae-wook KIM, Hye-min KIM, Katsuya TESHIMA Shinshu University

H1-12-009

11:40-11:55

Fabrication of Three-Dimensional Structure by High-Speed Copper Sulfate Plating

<u>Yohei SUZUKI</u>, Yasushi UMEDA, C.E.J CORDONIER, Hideo HONMA, Osamu TAKAI, Joo-Hyong NOH Kanto Gakuin University

H1-12-010

11:55-12:10

Surface Modification of Di-Electric Material using Photo Pretreatment

JONG-YOUNG PARK^{1,2,3}, YOUNG-JAE KIM^{2,3}, HIDEO HONMA^{1,2,3}, JOO-HYONG NOH^{1,2,3}

¹Department of Materials and Surface Engineering, Graduate School of Engineering, Kanto Gakuin University, ²Materials and Surface Engineering Research Institute, Kanto Gakuin University, ³Daeduck Electronics Co. Ltd

H1-12-011

12:10-12:25

Intelligent manipulation and transportation of water in the magnetic tubular microactuators(MTMAs)

Wenwei LEI^{1,2}, Norihiro SUZUKI¹, Chiaki TERASHIMA¹, Akira FUJISHIMA¹, Lei JIANG²

¹Tokyo University of Science, ²Beihang University

December 12, 2019

Oral Session 5

Time 14:00-16:00 Room Miel-3

Chairpersons Tatsuru SHIRAFUJI, Jun-Seok OH

H1-12-I12 ► Invited

Flash Lamp Annealing Method for Plated Films on Resin Substrates

<u>Joo-Hyong NOH</u>^{1,2}, YUSUKE MIYAZEKI^{1,3}, JONG-YOUNG PARK^{1,2,4}, YOSHIO HORIUCHI¹, TARO ARAKAWA³, OSAMU TAKAI¹, HIDEO HONMA^{1,2} ¹Materials and Surface Engineering Research Institute, Kanto Gakuin University, ²Graduate School of Engineering, Kanto Gakuin University, ³Graduate School of Engineering, Yokohama National University, ⁴Daeduck Electronics Co. Ltd.

H1-12-I13 Invited

14:20-14:40

14:00-14:20

Formation of High Adhesion Metal Films on ABS Resin by

Closed Systemized Fine Bubble Low Ozonated Water Katsuhiko TASHIRO

Kanto Gakuin University

H1-12-I14 ►Invited

14:40-15:00

Paper-based Biofuel Cell for Next Generation Energy Harvester and Wearable Healthcare Device

Isao SHITANDA Tokyo University of Science

H1-12-I15 ►Invited

15:00-15:20

Green and sustainable anticorrosive coating technology using steam on Aluminum alloys

<u>Ai SERIZAWA</u>, Kohei WATANABE, Takeo KOIKE, So Yoon LEE, Takahiro ISHIZAKI Shibaura Institute of Technology

H1-12-I16 Invited

15:20-15:40

Water Freezing Behavior on Aluminum Alloy Modified with Various Functional Groups <u>Junko HIEDA</u> Nagoya University

H1-12-I17 ►Invited

15:40-16:00

Transformation of bulk alloys to metal-organic and ceramic nanowires

Kostiantyn TURCHENIUK, Fujia WANG, Shunrui LUO, Danni LEI, Jim BENSON, Alexandre MAGASINSKY, Gleb YUSHIN, Ting ZHU, Baolin WANG Georgia Institute of Technology

	—— December 12,	2019
	Oral Sessi	on 6
Т	ime 16:30-18:40 F	Room Miel-3
Chairperso	ns Nobuyuki ZETTSU, Ai SERIZAWA	Takahiro ISHIZAKI,
H1-12-K18	►Keynote	16:30-17:00
	g Perspectives of Wa d at Interfacial Nanos	ter and Ionic Solution structures
<u>Katsumi K</u> Shinshu U		
H1-12-I19	▶ Invited	17:00-17:20
Coordination Hideki TAN	Recognition of Water on Polymer <u>VAKA¹,</u> Shotaro HIRAID BAGUSETTY ³ , J. Karl J(E ² , Kazuhiro NAGAI ² ,
Minoru T. N	/IIYAHARA ² , Katsumi KA Jniversity, ² Kyoto Unive	ANEKO ¹ , Katsuya TESHIMA ¹
H1-12-I20	► Invited	17:20-17:40
-	of Activated carbon w	vith iron for water
treatment Yuki KAMI	ΜΟΤΟ	
Nagoya Ur		
H1-12-I21	▶ Invited	17:40-18:00
Electrode M		as a Functional
H1-12-I22	► Invited	18:00-18:20
-	and Purification Usir	ng Microporous
Takaaki SA ¹ Institute of for Future Chemical S Engineerin	AKASHITA ² , Yuki KAMII of Materials Innovation, Society, Nagoya Univer Systems Engineering, C Ig, Nagoya University, ³	
H1-12-I23	▶ Invited	18:20-18:40
	emoval of Nitrate ion puble Hydroxides (LDI	-

Waste Water

Tomohito SUDARE¹, Masahiro KIYAMA², Fumitaka HAYASHI², Katsuya TESHIMA^{1,2}

¹Research Initiative for Supra-Materials, Shinshu University, ²Department of Materials Chemistry, Faculty of Engineering, Shinshu University

December 11, 2019

Poster Session

Time 11:30-13:00 Room Trade-0

H1-11-P01 ▶Invited

Anti-algae Effect of Water Treated by In-liquid Plasma Bubbled with Air Chiaki TERASHIMA

Tokyo University of Science

H1-11-P02

Advantages of Stimuli-responsive Amphiphiles for Removal of Noble-metal Nanoparticles from Water

Clara IMURA, Yuko ANDA, Saki IIJIMA Ochanomizu University

H1-11-P03

Development of solution plasma technology for sustainable nitrogen circulation system

Genji OKADA^{1,2,3}, Norihiro SUZUKI^{2,3}, Ken-ichi KATSUMATA^{2,3}, Yoshimi NISHIMURA⁴, Takeshi KONDO^{1,2}, Makoto YUASA^{1,2,3}, Akira FUJISHIMA², Chiaki TERASHIMA^{2,3,5}

¹Tokyo University of Science, ²Photocatalysis International Research Center, TUS, ³Research Center for Space Colony, TUS, ⁴Kurita Manufacturing Co.,Ltd, ⁵Research Initiative for Supra-Materials, Shinshu University

H1-11-P04

Pharmaceuticals Decomposition by Solution Plasma for Application to Water Purification Technology

Yuki HIRAMI^{1,2,3}, Vicente Rodriguez GONZALEZ^{2,4}, Norihiro SUZUKI^{2,3}, Ken-ichi KATSUMATA^{2,3}, Takeshi KONDO^{1,2}, Yoshimi NISHIMURA⁵, Makoto YUASA^{1,2,3}, Akira FUJISHIMA², Chiaki TERASHIMA^{2,3,6} ¹Graduation School of Science and Technology, Tokyo University of Science, ²Photocatalysis International Research Center, ³Research Center for Space Colony, ⁴Institute for Science and Technological Research of Sun Luis Potosi, ⁵Kurita Manufacturing Co. Ltd., ⁶Research Initiative for Supra-Materials

H1-11-P05

Evaluation of Formic Acid Adsorption Performance at the Surface of Hydro-garnet Materials by First Principles Calculation

Kunihiro ISHIDA¹, Kentarou WATANABE¹, Naoto TANIBATA^{1,2}, Masanobu NAKAYAMA^{1,2,3}, Hirotaka MAEDA¹

¹Nagoya Institute of Technology, ²Kyoto University ESICB of Elements Strategy Initiative for Catalysts and Batteries, ³MaDiS/CMi2 , NIMS of National Institute for Materials Science

Production of Liquid Fertilizer by Flow-type In-liquid Plasma Device

<u>Mao SASAKI</u>¹, Shoki SUZUKI^{1,2,3}, Norihiro SUZUKI^{2,3}, Ken-ichi KATSUMATA^{2,3}, Yoshimi NISHIMURA⁴, Takeshi KONDO^{1,2}, Makoto YUASA^{1,2,3}, Akira FUJISHIMA², Chiaki TERASHIMA^{2,3,5}

¹Tokyo University of Science, ²Photocatalysis International Research Center, ³Research Center for Space Colony, ⁴Kurita Manufacturing Co.,Ltd., ⁵Research Initiative for Supra-Materials

H1-11-P07

Spectroscopic Study for Fluorescein Adsorbed on ${\rm TiO}_2$ Surface by Surface-Enhanced Infrared Absorption Spectroscopy

<u>Hayato KONDO</u>¹, Yosuke KAGESHIMA^{1,2}, Katsuya TESHIMA^{1,2}, Hiromasa NISHIKIORI^{1,2}

¹Department of Materials Chemistry, Faculty of Engineering, Shinshu University, ²Research Initiative for Supra-Materials (RISM), Shinshu University

H1-11-P08

Effective Utilization of Cellulose Thin Film Deposited on Porous TiO_2 Photoanode in a Photofuel Cell

Takumi YOSHIMURA¹, Yosuke KAGESHIMA^{1,2} Katsuya TESHIMA^{1,2}, Hiromasa NISHIKIORI^{1,2}

¹Department of Materials Chemistry, Faculty of Engineering, Shinshu University, ²Research Initiative for Supra-Materials (RISM), Shinshu University

H1-11-P09

Advanced oxidation process for water purification using deep-ultraviolet light TiO2 nano composite electrode

<u>Akihiro OKAZAKI</u>¹, Haruo KURIYAMA¹, Izumi SERIZAWA¹, Aiga HARA², Yuiri HIRANO², Yukihiro NAKABAYASHI², Nitish ROY², Norihiro SUZUKI², Chiaki TERASHIMA², Kazuya NAKATA², Ken-ichi KATUMATA², Akira FUJISHIMA² ¹ORC Manufacturing, ²Tokyo University of Science

H1-11-P10

Formation of a silane/Mg(OH) $_2$ corrosion resistant composite film on flame-resistant AX41 alloy by combination of steam coating and spin coating treatments

Tomohiro MIYASHITA¹, Momo INAMURA¹, Hiraku MUTO¹, Takahiro ISHIZAKI²

¹Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, ²Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology

H1-11-P11

Corrosion resistance of films formed on thermally treated Mg-6Al-1Zn-2Ca alloy by steam coating

 $\frac{\text{Momo INAMURA}^1, \text{Tomohiro MIYASHITA}^1, \text{Hiraku MUTO}^1, \\ \text{Takahiro ISHIZAKI}^2$

¹Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, ²Department of Materials Science and Engineering, College of Engineering, Shibaura Institute of Technology

H1-11-P12

Fabrication of Structural Controlled Carbon Nanotube Ultralight Material

<u>Kazuki MATSUSHIMA</u>, Naoto SHIOURA, Tomonaga UENO Nagoya University

H1-11-P13

Effects of Particle Size of $(ZnSe)_{0.85}(Culn_{0.7}Ga_{0.3}Se_2)_{0.15}$ on Photoelectrochemical Performances in Sunlight-Driven Water Reduction

<u>Fumiaki TAKAGI</u>¹, Yosuke KAGESHIMA^{1,2}, Katsuya TESHIMA^{1,2}, Kazunari DOMEN^{1,2}, Hiromasa NISHIKIORI^{1,2} ¹Faculty of Engineering, Shinshu University, ²Research

Initiative for Supra-Materials (RISM), Shinshu University

H1-11-P14

Corrosion resistance of composite hydroxides film formed on Al-Zn-Mg alloy by steam coating

<u>Hiraku MUTO¹</u>, Tomohiro MIYASHITA¹, Momo INAMURA¹, Takahiro ISHIZAKI²

¹Materials Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, ²Department of Materials Science and Engineering, Faculty of Engineering, Shibaura Institute of Technology

H1-11-P15

Generation of Hydrophobic Effect on Nickel 3D Structure by Electroplating

<u>Shinya TAKO</u>¹, Tomofumi MOCHIZUKI², Masahiro NAKAYAMA³, Yohei KOTSUCHIBASHI⁴, Katsuhiko TASHIRO^{5,6}, Hideo HONMA^{5,6}, Osamu TAKAI^{5,6} ¹Kanto Gakuin University Graduate School of Engineering, ²Hamamatsu Industrial Research Institute, ³Nakayama Precious Metal Plating Co. Ltd., ⁴Shizuoka Institute of Science and Technology, Department of Materials and Life Science, ⁵Kanto Gakuin University Materials and Surface Engineering Research Institute, ⁶Research Advancement and Management Organization, Kanto Gakuin University

H1-11-P16

One-pot Synthesis of MnO₂-Carbon Hybrids For Enhancement of the Cationic Dyes Removal

Hymin KIM¹, <u>Seulgee LEE^{2,3}</u>, Nagahiro SAITO^{2,4,5,6} ¹LG chem., ²Department Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ³Division of Marine Engineering, Koream maritime and ocean University, ⁴Conjoint Research Laboratory in Nagoya University, Shinshu University, ⁵Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁶Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H1-11-P17

Molecular orientation control in a PEDOT transparent conductive film by hydrodynamic interaction

<u>Yushi FUJITA</u>¹, Keita YASUMORO¹, Takuya FUJIMA^{1,2} ¹Department of Mechanical Engineering / Tokyo City University, ²Advanced Research Laboratories, Tokyo City University

Flux Growth of Layered Sodium Titanate Crystals with Hierarchical Structure for Water Purifier Application

Taichi SAKAMAKI¹, Fumitaka HAYASHI¹,

Tomohito SUDARE², Katsuya TESHIMA^{1,2}

¹Department of Materials Chemistry, Shinshu University, ²Research Initiative for Supra-Materials, Shinshu University

H1-11-P19

Highly-stable Glucose/Oxygen Biofuel Cell based on Carbon Cloth Electrodes modified with Poly(glycidyl methacrylate)-grafted MgO-templated Porous Carbon

<u>Takanao KATO</u>¹, Yoshinao HOSHI¹, Isao SHITANDA^{1,2}, Masayuki ITAGAKI^{1,2}, Seiya TSUJIMURA^{2,3}

¹Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, ²Research Institute for Science and Technology, Tokyo University of Science, ³Division of Material Science, Faculty of Pure and Applied Science

H1-11-P20

Durability of Hirarchical Nanoporous Layer Glass Functionality at High Temperature

<u>Takumi ITO</u>¹, Erika TABATA¹, Yuki USHIODA¹, Takuya FUJIMA^{1,2}

¹Department of Mechanical Engineering, Tokyo City University, ²Advanced Research Laboratories, Tokyo City University

H1-11-P21

Flux Growth of Single-Crystalline, Layered $K_2Ti_2O_5$ Particles and Their Ion Exchange Property

Nanako TATEWAKI¹, Fumitaka HAYASHI¹,

Tomohito SUDARE², Katsuya TESHIMA^{1,2}

¹Department of Materials Chemistry, Shinshu University, ²Research Initiative for Super-Materials, Shinshu University

H1-11-P22

Gas-Liquid Interfacial Plasma Polymerization of EDOT

Jun-Seok OH, <u>Shunta HIRANO</u>, Ryoga KONISH, Tatsuru SHIRAFUJI Osaka City University

H1-11-P23

Renovation Water Permeability of a Continuous Porous Dielectric Using Propagation of Plasma Bullets

Tatsuru SHIRAFUJI, <u>Yuki HAMAMOTO</u>, Ryo MATOBA, Jun-seok OH

Osaka City University

H1-11-P24

Screen-printing of Chitosan Film for Improvement of Paper-based Lactate Biofuel Cell Stability

Kanako ODA¹, Yoshinao HOSHI¹, Isao SHITANDA^{1,2}, Masayuki ITAGAKI^{1,2}, Seiya TSUJIMURA^{2,3}, Abdelkader ZEBDA⁴

¹Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, ²Research Institute for Science and Technology, Tokyo University of Science, ³Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, ⁴UGA-Grenoble 1/CNRS/INSERM/TIMC-IMAG UMR 5525

H1-11-P25

Development of a highly durable PEDOT transparent conductive film using a macro-separated composition

<u>Keita YASUMRO</u>¹, Yushi FUJITA¹, Takuya FUJIMA^{1,2} ¹Department of Mechanical Engineering, Tokyo City University, ²Advanced Research Laboratories, Tokyo City University

December 11, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

H1-11-P26 ► Invited

Flux Crystal Growth Innovation for Advanced Water Science and Technology Katsuva TESHIMA

Shinshu University

H1-11-P27

Synthesis of Phosphorus-doped Diamond by In-liquid Microwave Plasma CVD Process

<u>Akihiro UCHIDA</u>¹, Chiaki TERASHIMA^{1,2}, Hiroshi UETSUKA^{1,3}, Norihiro SUZUKI¹, Ken-ichi KATSUMATA¹, Masayuki ITAGAKI¹, Isao SHITANDA¹, Yoshinao HOSHI¹, Takeshi KONDO¹, Akira FUJISHIMA¹

¹Tokyo University of Science, ²Shinshu University, ³Asahi Diamond Industrial Co., Ltd.

H1-11-P28

Development of photocatalytic $\mbox{HTiO}_{\mbox{\tiny 2-x}}$ by plasma treatment in liquid

Junki ISHII^{1,2}, Shoki SUZUKI^{1,2}, Norihiro SUZUKI², Ken-ichi KATSUMATA², Kazuya NAKATA^{1,2}, Takeshi KONDO^{1,2}, Makoto YUASA^{1,2}, Akira FUJISHIMA², Chiaki TERASHIMA² ¹Tokyo University of Science, ²Photocatalysis International Research Center

H1-11-P29

Protection of the important cultural property using a self-cleaning effect by the photocatalyst

<u>Kazuki KATO</u>^{1,2}, Chiaki TERASHIMA², Norihiro SUZUKI², Ken-ichi KASTUMATA², Takeshi KONDO^{1,2}, Makoto YUASA^{1,2}, Akira FUZISHIMA², Tomonori SUZUKI³

¹Department of Pure and Applied Chemistry, Tokyo University of Science, ²Photocatalysis International Research Center, Tokyo University of Science, ³Department of Applied Biological Science, Tokyo University of Science

Development of Selective Hydrophilic / Hydrophobic Surface Treatment for Semiconductor Substrate

<u>Hiroshi IKARI</u>¹, Chiaki TERASHIMA², Norihiro SUZUKI², Ken-ichi KATSUMATA², Takeshi KONDO¹², Makoto YUASA¹², Akira FUJISHIMA²

¹Graduate School of Science and Technology, Tokyo University of Science, ²Photocatalysis International Research Center

H1-11-P31

Fabrication of Ni-Co Layered Double Hydroxides via Topotactic Reaction for Efficient Removal of Nitrate Ions : Purification of Waste Water

- <u>Shuhei TAMURA</u>¹, Tomohito SUDARE², Fumitaka HAYASHI¹, Katsuya TESHIMA^{1,2}
- ¹Department of Materials Chemistry, Shinshu University, ²Research Initiative for Supra-Materials, Shinshu University

H1-11-P32

Concentration of trace components in the environmental water using freezing and melting process of eutectics of salt and water

<u>Yuko NISHIMOTO</u>, Masaru ARAI Kanagawa Univ.

H1-11-P33

Analysis on Biocathode based on MgO-templated Carbon-modified Carbon Cloth by 3D Impedance Spectroscopy

<u>Hiromichi INOUE</u>¹, Yoshinao HOSHI¹, Isao SHITANDA^{1,2}, Masayuki ITAGAKI^{1,2}, Seiya TSUJIMURA^{2,3}

¹: Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, ²Research Institute for Science and Technology, Tokyo University of Science, ³Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba

H1-11-P34

Liquid Phase Plasma Synthesis of Amino-Rich Carbonaceous as an Efficient Adsorbent for Removal of Heavy Metal lons

Mongkol TIPPLOOK¹, <u>Andres Eduardo ROMERO VALENZUELA</u>¹, Nagahiro SAITO^{1,2,3,4}

¹Department of Chemical System Engineering. Graduate School of Engineering. Nagoya University, ²Conjoint Research Laboratory in Nagoya University, Shinshu University, ³Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁴Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H1-11-P35

Fabrication of Porous Silica / Carbon Nanotube Composite Materials for Thermal Insulator

<u>Naoto SHIOURA</u>¹, Kazuki MATSUSHIMA¹, Tomoki OSATO¹, Tomonaga UENO¹, Norifumi ISU², Takeshi HASHIMOTO³, Takumi YANA³

¹Nagoya University, ²LIXIL Corp., ³Meijo Nano Carbon Co., Ltd.

H1-11-P36 ►Invited

Pattern formation in heterostructured medium by reaction-diffusion system Tomonaga UENO

Nagoya University

H1-11-P37

Capillary Condensation on Hierarchical Nanoporus Laver Glass

<u>Erika TABATA¹</u>, Yuki USHIODA¹, Takumi ITO¹, Takuya FUJIMA^{1,2} ¹Faculty of Engineering, Tokyo City University, ²Advanced Research Laboratries, Tokyo City University

H1-11-P38

Surface modification of B-doped diamond using $\rm H_2O~RF$ plasma

<u>Yukihiro SAKAMOTO</u> Chiba Institute of Technology

H1-11-P39

A Porous Layer Formation on Glaze for a Superhydrophilic Anti-Fouling Tile

Yuki USHIODA¹, Erika TABATA¹, Takumi ITO¹ ¹Department of Mechanical Engineering Tokyo City University, ²Advanced Research Laboratories Tokyo City University

H1-11-P40

Study on Aging Effect of Adhesion Strength between Polyimide Film and Copper Layer

<u>Changmyeon LEE^{1,2}</u>, Hongkee LEE², Hideo HONMA^{1,3}, Osamu TAKAI³, Joo-Hyong NOH^{1,3}, Jun-Mi JEON² ¹Graduate School of Engineering/Kanto Gakuin University, ²Surface treatment group/Korea Institute of Industrial Technology, ³Materials and Surface Engineering Research Institute/Kanto Gakuin University

H1-11-P41 ► Invited

Protein adsorption behavior on reduced graphene oxide and boron-doped diamond

<u>Madoka TAKAI</u>¹, Chiaki TERASHIMA², Yixuan HUANG¹ ¹The University of Tokyo, ²Tokyo University of Science

H1-11-P42

Flash Lamp Annealing Effect on low-dielectric thin film

<u>Byeong-Jae CHOI</u>^{1,2}, Jong-Young PARK^{1,2,3}, Hideo HONMA^{1,2}, Joo-Hyong NOH^{1,2}

¹Graduate School of Engineering, Kanto Gakuin University, ²Materials and Surface Engineering Research Institute, Kanto Gakuin University, ³Daeduck Electronics Co. Ltd.

H1-11-P43

Flux Growth of Crystalline Titanosilicate K₂TiSi₃O₉ Hexagonal Plates for Water Purifier Application

Eumitaka HAYASHI¹, Mizuho KIYOHARA¹, Yongsu KIM¹, Tomohito SUDARE², Katsuya TESHIMA^{1,2} ¹Department of Materials Chemistry, Shinshu University,

²Research Initiative for Supra-Materials, Shinshu University

Ion Exchange Properties of NiFe Layered Double Hydroxides Crystals Fabricated via Topotactic Reaction: Purification of Waste Water

<u>Kazuki HIRONO</u>¹, Tomohito SUDARE², Fumitaka HAYASHI¹, Katsuya TESHIMA^{1,2}

¹Department of Materials Chemistry, Shinshu University, ²Research Initiative for Supra-Materials, Shinshu University

H1-11-P45

Painted Diamond Electrode for Electrolytic Water Treatment

Takeshi KONDO¹, <u>Haruka NAKAJIMA¹</u>, Shuji EZURA¹, Eiichi KANEDA², Toshifumi TOJO¹, Makoto YUASA¹ ¹Tokyo University of Science, ²A1 Technica Co., Ltd.

H1-11-P46

Sensitive Detection of Ciplofloxacin at Screen-Printed Diamond Electrode by Control of Surface Termination of Boron-Doped Diamond Powder

<u>Tomohiro MATSUNAGA</u>, Takeshi KONDO, Toshifumi TOJO, Makoto YUASA Tokyo University of Science

H1-11-P47

Application of Boron-Doped Nanodiamond to Aqueous Supercapacitors

<u>Seiya SUGAI</u>¹, Kenjo MIYASHITA¹, Takeshi KONDO¹, Masahiro NISHIKAWA², Takehiro TEI², Toshifumi TOJO¹, Makoto YUASA¹

¹Tokyo University of Science, ²Daicel Corporation

H1-11-P48

Evaluation of Wettability and Corrosion Resistance of SiO:CH Coatings Deposited on SUS304 Substrate by PECVD

Mamoru YAZAKI¹, Masahiro KANNO¹, Kyosuke KUREHA¹, Yasushi INOUE¹, Osamu TAKAI²

¹Chiba Institute of Technology, ²Kanto Gakuin University

H1-11-P49

Analysis of Local Ion Concentration Near Membrane by Dynamic Complex Impedance Measurement in Electrolyte / Reverse Osmosis Membrane System

<u>Atsushi TANAKA</u>^{1,2}, Hirosuke TATSUMI³, Katsuya TESHIMA^{1,2} ¹Research Initiative for Supra-Materials, Shinshu University, ²Grobal Aqua innovation Center, Shinshu University, ³Department of Science, Shinshu University

H1-11-P50

Study of Bacterial Adhesion Strength on Phospholipid Copolymer Coating Surfaces by Analysis with Microchannel

Microchannel

Madoka TAKAI¹, <u>Zhou LU</u>¹, Tsukuru MASUDA¹, Norifumi ISU²

¹The University of Tokyo, ²LIXIL corporation

December 11–13, 2019 – Symposium H-2

Plasma-Based Synthesis, Processing and Characterization of Materials for Energy and Environment

Organizers

Masaharu SHIRATANI (Kyushu University) Kunihiro KAMATAKI (Kyushu University) Kazuo TERASHIMA (The University of Tokyo) Yuichi SETSUHARA (Osaka University) Jin-Hyo BOO (Sungkyunkwan University) Uroš CVELBAR (Jožef Stefan Institute)

December 11, 2019

Oral Session 1

Room Mont-3 Time 9:00-11:30

Chairperson Hajime SHIRAI

H2-11-I01 Invited

9.00-9.30

Low Temperature Plasma Deposition Processes: From Amorphous Silicon to Epitaxial Growth and Nanowires

Pere ROCA I CABARROCAS LPICM, CNRS, Ecole polytechnique

H2-11-002

9:30-9:45

Defect Control of Plasma Synthesized Free-standing Silicon Nanocrystals

Shogo SHIBATA, Shuhei WAKAMATSU, Firman Bagja JUANGSA, Tomohiro NOZAKI Tokyo Institute of Technology

H2-11-003

9:45-10:00

Printable Organic-Inorganic Hybrid Solar Cell via Silicon Inks

Munechika OTSUKA¹, Yi DING², Shogo SHIBATA¹, Firman Bagja JUANGSA¹, Yuki KUROKAWA³, Takehito KATO³, Tomohiro NOZAKI¹

¹Department of Mechanical Engineering, Tokyo Institute of Technology, ²Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, ³Department of

Mechanical Engineering, National Institute of Technology, Oyama College

H2-11-I04 ► Invited

10:00-10:30

Highly transparent Pt-free dye-sensitized solar cells Hyunwoong SEO

Department of Energy Engineering, Inje University

H2-11-005

10:30-10:45

Therma- and plasma-ALD Al₂O₃/n-Si field effect inversion layer for PEDOT:PSS/n-Si heterojunction solar cells

Md Enamul KARIM¹, Arifuzzaman RAJIB¹, Tomofumi UKAI², A.T.M. Saiful ISLAM¹, Shunji KUROSU², Yasuhiko FUJII², Masahide TOKUDA², Tatsuro HANAJIRI², Ryo ISHIKAWA¹, Keiji UENO¹, Hajime SHIRAI¹ ¹Saitama University, ²Toyo University

H2-11-I06 ► Invited

10:45-11:15

Plasma Process Silicon Quantum Dots and Perovskites Hybrids for PV

<u>Vladimir SVRCEK¹</u>, Calum MCDONALD¹, Conor ROCKS^{1,2}, Davide MARIOTTI², Takuya MATSUI¹

¹AIST Tsukuba, ²University of Ulster, BT37 0QB, Northern Ireland, UK

H2-11-007

11:15-11:30

Highly-transparent photovoltaic cell based on atomically thin 2D materials

Xing HE¹, Yoshiki YAMAGUCHI¹, Toshiro KANEKO¹, Toshiaki KATO^{1,2}

¹Tohoku University, ²JST-PRESTO

December 11, 2019 **Oral Session 3**

Time 16:30-18:30 Room Mont-3

Chairperson Kunihiro KAMATAKI

Invited

16:30-17:00

17:00 - 17:15

Photoelectrochemical Water Splitting for Hydrogen Production with Ternary Oxide Materials

Min-Kyu SON Kyushu University

H2-11-009

H2-11-010

H2-11-I08

Kinetic study of plasma mediated heterogeneous catalysis of biogas

Yoshiki WATANABE, Kenta SAKATA, Seigo KAMESHIMA, Zunrong SHENG, Tomohiro NOZAKI

Tokyo Institute of Technology

17:15-17:30

Non-thermal plasma as a powerful tool to synthesize bio-effective materials in solutions

Hiromasa TANAKA, Masaaki MIZUNO, Kenji ISHIKAWA, Hiroki KONDO, Hiroshi HASHIZUME, Yasumasa OKAZAKI, Shinya TOYOKUNI, Kae NAKAMURA, Nobuhisa YOSHIKAWA, Hiroaki KAJIYAMA, Fumitaka KIKKAWA, Masaru HORI Nagoya University

H2-11-I11 Invited

17:30-18:00

Plasmon-Enhanced Plasma Processing of N-doped Graphene for Fuel-cell Catalysts

Takeshi KITAJIMA, Ginga SATOH, Toshiki NAKANO National Defense Academy

-232 -

H2-11-I12 Invited

18:00-18:30

Investigation of Impact of Plasma Fluctuation Driven by Amplitude Modulated VHF Discharge on Growth of Nanoparticles in Reactive Plasma

Kunihiro KAMATAKI, Ryosuke IWAMOTO, Hayate TANAKA, Daisuke YAMASHITA, Naho ITAGAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University

December 12, 2019 Oral Session 4 Time 9:00-11:30 Room Work-3 Chairperson Hiroki KONDO

H2-12-I01 Invited

9:00-9:30

Facile improvement in cycle capacity with PFE Si:SnOx nanocomposites for lithium secondary batteries Makoto KAMBARA

The University of Tokyo

H2-12-I02 ► Invited

9:30-10:00

High-Speed Visualization of Metal Oxide Precursor in Thermal Plasma during Nanoparticle Synthesis Process <u>Manabu TANAKA</u>, Yuki SAITO, Takayuki WATANABE Kyushu University

H2-12-003

10:00-10:15

Formation Mechanism of Tungsten Boride Nanoparticles by Induction Thermal Plasma

<u>Libei LIU</u>, Yuta TANOUE, Manabu TANAKA, Takayuki WATANABE Kyushu University

H2-12-004

10:30-10:45

Reaction Mechanisms of High-Fluorine-Content Reactive Ion etching (RIE) and Atomic Layer Etching (ALE) of Si and SiO $_2$

Erin Joy Capdos TINACBA Osaka University

H2-12-005

10:45-11:00

Energy distribution measurement of substrate incident charged particles in DC magnetron discharge of oxide target

<u>Masaki ISHIBA</u>

Graduate School of Engineering, Nagasaki University

H2-12-I06 Invited

11:00-11:30

Development of a direct bonding process by using high-frequency Ar plasma jet

<u>Giichiro UCHIDA</u>¹, Rikuro MACHIDA², Kosuke TAKENAKA², Yuichi SETSUHARA²

¹Meijo University, ²Osaka University

— December 12, 2019 -	
Oral Session 6	

Time 16:30-18:30 Room Work-3

Chairperson Takeshi KITAJIMA

H2-12-I07 Invited

Synthesis of Carbon Nanostrucures using Microwave-Exited Atmospheric Pressure Plasma

<u>Mineo HIRAMATSU</u>¹, Koki MIYASHITA¹, Taishu OYAMA¹, Keigo TAKEDA¹, Hiroki KONDO², Masaru HORI² ¹Meijo University, ²Nagoya University

H2-12-008

Apparent Activation Energy of Sabatier Reaction in Low Pressure Plasma-Catalyst Gas Conversion

Masaharu SHIRATANI

Kyushu University

H2-12-009

17:15-17:30

17.00 - 17.15

16:30-17:00

Atomic hydrogen exposures of radical-injection CH_4/H_2 plasma-enhanced chemical vapor deposited amorphous carbon films

<u>Yasuyuki OHASHI</u>, Hiroki KONDO, Kenji ISHIKAWA, Takayoshi TSUTSUMI, Makoto SEKINE, Masaru HORI University of Nagoya

H2-12-010

17:30-17:45

17:45-18:00

18:00-18:15

18:15-18:30

Utilization of microwave-induced plasma in extremely fast activation for preparation of activated carbon with large surface area

<u>Purichaya KUPTAJIT</u>, Noriaki SANO Kyoto University

H2-12-011

Fabrication of graphene nanoribbon-based quantum device with plasma CVD

<u>Mizuki SEO</u>¹, Wakana OKITA¹, Hiroo SUZUKI¹, Toshiro KANEKO¹, Toshiaki KATO^{1,2} ¹Tohoku University, ²JST-PRESTO

H2-12-012

Chirality selective growth of (6,4) single-walled carbon nanotubes by plasma CVD

 $\frac{\text{Satoru SHIINA}^1, \text{Takuya SHIMA}^1, \text{Bin XU}^1, \text{Toshiro KANEKO}^1, \text{Toshiaki KATO}^{1,2}$

¹Tohoku University, ²JST-PRESTO

H2-12-013

Synthesis and crystallinity of nanographene using inliquid plasma of ethanol

Ryo HAMAJI¹, Hiroki KONDO¹, Takayoshi TSUTSUMI¹, Kenji ISHIKAWA¹, Makoto SEKINE¹, Keigo TAKEDA², Mineo HIRAMATSU², Masaru HORI¹

¹University of Nagoya, ²University of Meijo

Symposium H

December 1	3, 2019)	
Oral Sess	ion 7	7	
Time 9:00-11:30	Room	Work-3	
Chairperson Giichiro UCHIDA			
H2.12.001			0.00-0.1

H2-13-001

Decomposition of vanillin and lignin using pulsed low current arc in ambient air for production of biocellulosic ethanol

Vladislav GAMALEEV¹, Naoyuki IWATA¹, Ginji ITO¹,

Motoyuki SHIMIZU², Masashi KATO², Mineo HIRAMATSU¹, Masafumi ITO¹

¹Faculty of Sicence and Technology, Meijo University, ²Faculty of Agriculture, Meijo University

H2-13-002

9:15-9:30

Modification of lipid metabolism in Coccomyxa sp. treated by non-equilibrium atmosphere pressure plasma

Takumi KATO

Nagoya University

H2-13-003

9:30-9:45

Role Of Water For The Mist-CVD Of Al₂O₃

Arifuzzaman RAJIB¹, Md Enamul KARIM¹, Koki IMAI¹, Tomofumi UKAI², Shunji KUROSU², Yasuhiko FUJII², Masahide TOKUDA², Tatsuro HANAJIRI², Ryo ISHIKAWA¹, Keiji UENO¹, Hajime SHIRAI¹

¹Saitama University, ²Toyo University

H2-13-004

9:45-10:00

10:00-10:30

Growth Promotion Effect of Oxygen-Radical-Treated Phenylalanine Solutions

Naoyuki IWATA¹, Vladislav GAMALEEVE¹, Hiroshi HASHIZUME², Jun-Seok OH³, Takayuki OHTA¹, Kenji ISHIKAWA², Masaru HORI², Masafumi ITO¹ ¹Meijo University, ²Nagoya University, ³Osaka City University

H2-13-I05

Invited

Changes of resistive elements during degradation of carbon nanowalls electrodes for fuel cell synthesized employing a CH₄/H₂ mixture gas plasma

Hiroki KONDO¹, Shun IMAI¹, Takayoshi TSUTSUMI¹, Kenji ISHIKAWA¹, Makoto SEKINE¹, Mineo HIRAMATSU², Masaru HORI¹

¹Nagoya University, ²Meijo University

H2-13-006

10:30-10:45

Fabrication of SiNx films using SiH₄+N₂ multi hollow discharge plasma CVD method: Effects of total gas flow rate

Yusuke SASAKI Kyushu University

H2-13-I07 Invited

Sputtering Deposition with Impurities: Another Key Parameter to Control Film Structures Naho ITAGAKI, Kunihiro KAMATAKI, Kazunori KOGA,

10:45-11:15

Masaharu SHIRATANI Kyushu University

> **Closing Remarks** 11:15-11:30

December 12, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

H2-12-P01

Two-dimentional functional thin film preparation by sputtering deposition using powder targets Hiroharu KAWASAKI

National Institute of Technology, Sasebo College

H2-12-P02

Thin film preparation for preventing hydrogen embrittlement using sputtering deposition method Hiroharu KAWASAKI

National Institute of Technology, Sasebo College

H2-12-P03

Influence of Solute Atom Radius on Adsorption-induced Electrochromic Phenomenon of InN Films

Masahiro HOMMA^{1,2,3}, Yasushi INOUE¹, Osamu TAKAI⁴ ¹Chiba Institute of Technology, ²The Japan Society of Applied Physics, ³Materials Science Society of Japan, ⁴Kantou Gakuin Univ

H2-12-P04

Preparation of Transparent Conductive Oxide Thin Film Using Mixed Powder Target by Sputtering Method: Control of Mixing Ratio

Tamiko OHSHIMA¹, Masaki NAKAMURA¹, Hiroharu KAWASAKI¹, Masanori SHINOHARA¹, Yoshihito YAGYU¹, Takeshi IHARA¹, Yoshiaki SUDA² ¹National Institute of Technology, Sasebo College, ²National Institute of Technology, Ishikawa College

H2-12-P05

Plasma-assisted Reactive Process for Fabrication of High Mobility IGZO Thin Film Transistor at Low-Temperature

Kosuke TAKENAKA¹, Hiroyuki HIRAYAMA¹, Giichiro UCHIDA², Akinori EBE³, Yuichi SETSUHARA¹

¹Joining and Welding Research Institute, Osaka University, ²Faculty of Science and Technology, Meijo University, ³EMD Corporation

H2-12-P06

Plasma Surface Modification towards Application of Polymers to Biomaterials

Kosuke TAKENAKA, Yuichi SETSUHARA Osaka University

H2-12-P07

Influence of Substrate Morphology on Microstructure of InN Films Fabricated by Glancing-angle Reactive Sputtering

<u>Masashi HOSOYA</u>¹, Yasushi INOUE¹, Osamu TAKAI² ¹Chiba Institute Of Technology, ²Kanto Gakuin University

H2-12-P08

Comparison of Deposited Layers Using Three Different Thermal Sprays

Yasuyuki KAWAGUCHI Kyushu University

H2-12-P09

Surface Modification of Molybdenum Disulfide

Synthesized from Molybdenum Thin Film <u>Akihisa OGINO</u>, Masachika TSUZUKI Shizuoka University

H2-12-P10

Electromechanically High Sensitive Dielectric Elastomer as Composite of Polyrotaxane/Solution Plasma Surface Modified Graphene Aligned with External Electric Field.

<u>Kaito NAGAYAMA</u>¹, Taku GOTO^{1,2}, Koichi MAYUMI¹, Kazuto HATAKEYAMA², Yoshiki SHIMIZU², Tsuyohito ITO¹, Kohzo ITO¹, Yukiya HAKUTA², Kazuo TERASHIMA^{1,2}

¹The University of Tokyo, ²National Institute of Advanced Industrial Science and Technology

H2-12-P11

Preparation of Carbon Nanomaterials by Atmospheric Pressure Gliding Arc Discharge

Shin-ichi AOQUI Sojo University

H2-12-P12

Reduction of graphene oxide by gas-liquid interface plasma

Takayuki OHTA¹, <u>Ikumi OHSAWA</u>¹, Takahiro SAIDA² ¹Department of Electrical and Electronic Engineering, Meijo University, ²Department of Applied Chemistry, Meijo University

H2-12-P13

Effects of Pulse Bias Voltage on Characteristics of a-C:H Film Deposited by High Pressure $\rm Ar+CH_4$ Plasma CVD Process

<u>SungHwa HWANG</u>¹, Ryosuke IWAMOTO¹, Kunihiro KAMATAKI¹, Naho ITAGAKI¹, Kazunori KOGA^{1,2}, Masaharu SHIRATANI¹

¹Kyushu University, ²National Institutes of Natural Science

H2-12-P14

Effects of higher-order silane molecules on Si-H $_{\rm 2}$ bond and Si-H bond densities in a-Si:H films.

<u>Hisayuki HARA</u>, Yuan HAO, Kohei ABE, Daisuke YAMASHITA, Kunihiro KAMATAKI, Naho ITAGAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University

H2-12-P15

Developing Prediction of Amorphization Condition Models from Sputter Deposition Experimental Results by Machine Learning Method

Kunihiro KAMATAKI, Ryosuke IWAMOTO, Sakyo OKUNAGA, Soichiro MURAOKA, Daisuke YAMASHITA, Naho ITAGAKI, Kazunori KOGA, Masaharu SHIRATANI Kyushu University

H2-12-P16

Plasma-assisted CO₂ methanization in cryogenic condition

<u>Hayato KASAGAWA</u> The University of Tokyo

December 11–13, 2019 – Symposium H-3

5th E&J BLS

Advanced Functional Oxides: Processing, Characterization and Devices

[Organizers]

Tetsuya YAMAMOTO (Kochi University of Technology) Nobuyuki IWATA (Nihon University) Kohei FUJIWARA (Tohoku University) Valentin Craciun (National Institute for Laser, Plasma and Radiation Physics and Extreme Light Infrastructure-NP) Hiroaki NISHIKAWA (Kindai University) Tetsuo TSUCHIYA (National Institute of Advanced Industrial Science and Technology) Florencio Sanchez (Institut de Ciencia de Materials de Barcelona) Robert L. Z. Hoye (University of Cambridge) Shunichi ARISAWA (National Institute for Materials Science)

December 11, 2019 -

Oral Session 1

Time 9:00-11:20 Room Miel-2

Chairpersons Tetsuya YAMAMOTO, Hiroshi KAGEYAMA, Tetsuo TSUCHIYA

H3-11-K01 ► Keynote

9:10-10:10

New Frontiers in Oxides Science with Multiple Anions <u>Hiroshi KAGEYAMA</u>

Kyoto University

Break 10:10-10:20

H3-11-002

10:20-10:35

Unique electronic structure of ZnO crystals with the retained Ar atoms

<u>Tetsuya YAMAMOTO¹</u>, Hisao MAKINO¹, Junichi NOMOTO², Tomohiko NAKAJIMA², Tetsuo TSUCHIYA²

¹Kochi University of Technology, ²National Institute of Advanced Industrial Science and Technology

H3-11-003

10:35-10:50

Characterization of planar ZnO microcavities for the near ultraviolet polariton laser operatable at room temperature

Kohei SHIMA, Kentaro FURUSAWA, Kazunobu KOJIMA, Shigefusa F CHICHIBU Tohoku University

H3-11-004

Light-Stimulated Synaptic Functionality in Solution Processed Zinc-Tin Oxide (ZTO) Thin Film Transistor

<u>Jen-Sue CHEN</u>¹, Ting-Ruei LIN¹, Po-Jen CHENG¹, Sheng-Rong LIN¹, Yen-Hsun SU¹, Jih-Jen WU², Chao-Cheng KAUN³

¹National Cheng Kung University, Dept. Materials Science and Engineering, ²National Cheng Kung University, Dept. Chemical Engineering, ³Academia Sinica, Research Center for Applied Sciences

H3-11-005

11:05-11:20

10:50-11:05

Growth and characterization RS-ZnCdO thin films on MgO(100) substrates by molecular beam epitaxy

Jang HYOCHANG¹, Katsuhiko SAITO¹, Qixin GUO¹, Tooru TANAKA¹, Man Yu KIM², Wladek WALUKIEWICZ^{3,4} ¹Saga University, ²City University of Hong Kong, ³Lawrence Berkeley National Laboratory, ⁴University of California at Berkeley

December 11, 2019 -

Oral Session 3

Time 16:30-18:30 Room Miel-2

Chairpersons Valentin CRACIUN, Florencio SANCHEZ

H3-11-I06 ►Invited

16:30-17:05

New Capabilities and Characterization Tools for Atmospheric Pressure Spatial Deposition of Oxide Thin films

Kevin MUSSELMAN^{1,2}, Kissan MISTRY^{1,2}, Alexander JONES^{1,2}, Abdullah ALSHEHRI^{1,2}, Jhi YONG LOKE¹

¹Dept. of Mechanical and Mechatronics Engineering, University of Waterloo, ²Waterloo Institute for Nanotechnology, University of Waterloo

H3-11-007

17:05-17:20

Carrier transport of ultrathin Sn-doped In_2O_3 films grown by reactive plasma deposition

<u>Yutaka FURUBAYASHI</u>¹, Makoto MAEHARA², Hisashi KITAMI^{1,2}, Toshiyuki SAKEMI², Hisao MAKINO¹, Tetsuya YAMAMOTO¹

¹Kochi University of Technology, ²Sumitomo Heavy Industries, Ltd.

H3-11-008

17:20-17:35

Manipulation of carrier density for Sn-doped In_2O_3 films by irradiation of negatively ionized oxygen ions

Yutaka FURUBAYASHI¹, Makoto MAEHARA², Hisashi KITAMI^{1,2}, Toshiyuki SAKEMI², Hisao MAKINO¹,

Tetsuya YAMAMOTO¹

¹Kochi University of Technology, ²Sumitomo Heavy Industries, Ltd.

Symno

H3-11-009

17:45-18:00

$In_2O_3\mbox{-}based$ Thin Film Transistor Fabricated by Direct Nanoimprint Technique

Eisuke TOKUMITSU

Japan Advanced Institute of Science and Technology

H3-11-010

18:00-18:15

Comparative Studies of the Composition and Structure of Various Tungsten Oxide Thin Films

Valentin CRACIUN^{1,6}, Hisao MAKINO², Doina CRACIUN¹, Petronela GAROI¹, Maria Diana DRACEA³, Dan PANTELICA³, Nathan C. OU⁴, Lisa MCELWEE-WHITE⁴, Marian MOGILDEA⁵, George MOGILDEA⁵

¹National Institute for Laser, Plasma and Radiation Physics, ²Kochi University of Technology, ³Horia Hulubei National Institute for Physics and Nuclear Engineering, ⁴University of Florida, ⁵Institute of Space Science, ⁶Extreme Light Infrastructure for Nuclear Physics

H3-11-011

18:15-18:30

Optical properties and Rietveld refinement of $Ca_{3}WO_{6}$: $Eu^{3\ast}$ phosphors

<u>Takahito OTSUKA</u>, Tomokatsu HAYAKAWA Nagoya Institute of Technology

- December 12, 2019

Oral Session 4

Time 9:00-11:25 Room Work-2

Chairpersons Shunichi ARISAWA, Robert L.Z. HOYE

H3-12-I01 ► Invited

9:00-9:35

Effect of air processing on the transport properties of ZnO:Al thin films. A new conductivity model

<u>David MUÑOZ-ROJAS</u>, Viet Huong NGUYEN, Daniel BELLET Laboratoire des Matériaux et du Génie Physique (CNRS -Grenoble INP)

H3-12-002

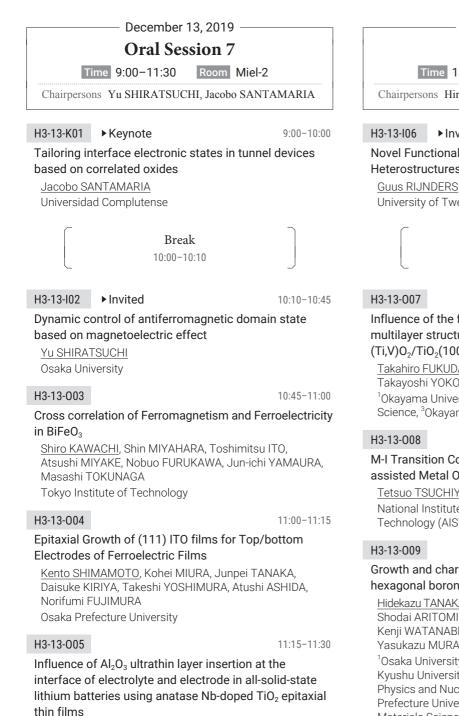
9:35-9:50

Manipulation of growth and oxygen-related point defects of Ga-doped ZnO polycrystalline films by controlling direct-current arc plasma

<u>Hisashi KITAMI</u>^{1,3}, Junichi NOMOTO², Toshiyuki SAKEMI¹, Yutaka FURUBAYASHI³, Hisao MAKINO³,

Tetsuya YAMAMOTO³

¹Sumitomo Heavy Industries, Ltd., ²National Institute of Advanced Industrial Science and Technology (AIST), ³Kochi University of Technology


H3-12-003

9:50-10:05

Sequential Compensation Effect of Anion/Cation Vacancies on Thermal Stability of Electrical Conductivity of Al-doped ZnO Nanofilms

Ruolin YAN, <u>Tsunaki TAKAHASHI</u>, Masaki KANAI, Takuro HOSOMI, Guozhu ZHANG, Kazuki NAGASHIMA, Takeshi YANAGIDA Kyushu University

	Break 10:05–10:15	
H3-12-I04	▶ Invited	10:15-10:50
solar cells <u>Hendrik C</u> JJ TERBL/	ion phosphors for optical the <u>SWART</u> , Ashwini KUMAR, RE K ANS, Govind B NAIR of the Free State	
H3-12-I05	▶Invited	10:50-11:25
Antonio Al	-Zentrum Berlin	olar cells
	— December 12, 2019 -	
_	Oral Session 6	
Т	ime 16:30-18:30 Room V	√ork-2
Chairperso	ns Kohei FUJIWARA, Masahiro) YOSHIMURA
in Perovski	▶Invited es and High Valence States. ite-Type Oxides by Madelung	
	? YOSHIMURA heng Kung University	
H3-12-I07	►Invited	17:05-17:40
chemical a Gunkel FE	doped SrTiO₃ surfaces and in nd electrical means LIX, Christoph BÄUMER, Regina Iszentrum Juelich GmbH	-
H3-12-I08	►Invited	17:40-18:15
solar energ	on of hierarchical oxide nano yy conversion U, Jih-Sheng YANG, Shih-Yu CH heng Kung University	
H3-12-009		18:15-18:30
Fabrication Electroche Yuzuki TO	n of ZnO/Co₃O₄ Heterojunctic mical Deposition <u>MITA</u> , Masaya ICHIMURA stitute of Technology	

Daisuke IMAZEKI¹, Kazunori NISHIO¹, Ryota SHIMIZU^{1,2}, Taro HITOSUGI

¹Tokyo Institute of Technology, ²JST-PRESTO

December 13, 2019

Oral Session 8

Time 14:00-15:40 Room Miel-2

Chairpersons Hiroaki NISHIKAWA, Nobuyuki IWATA

►Invited

Novel Functionalities in Atomically Controlled Oxide Heterostructures by Pulsed Laser Deposition

University of Twente

Break 14:35-14:45

14:45-15:00

14:00-14:35

Influence of the film thickness on the formation of multilayer structures via spinodal decomposition in (Ti,V)O₂/TiO₂(100) films

Takahiro FUKUDA¹, Kensei TERASHIMA², Takanori WAKITA³, Takayoshi YOKOYA³, Yuji MURAOKA³

¹Okayama University, ²National Institute for Materials Science, ³Okayama University

15:00-15:15

M-I Transition Control of VO₂ Thin Film by Excimer Laser assisted Metal Organic deposition (ELAMOD)

Tetsuo TSUCHIYA

National Institute of Advanced Industrial Science and Technology (AIST)

15:15-15:30

Growth and characterization of VO₂ thin films on hexagonal boron nitride

Hidekazu TANAKA¹, Mahito YAMAMOTO¹, Koji SHIGEMATSU², Shodai ARITOMI³, Ryo NOUCHI^{4,5}, Teruo KANKI¹, Kenji WATANABE⁶, Takashi TANIGUCHI⁶, Yasukazu MURAKAMI², Shingo GENCHI¹

¹Osaka University, ²The Ultramicroscopy Research Center, Kyushu University, ³Department of Applied Quantum Physics and Nuclear Engineering, Kyusyu University, ⁴Osaka Prefecture University, ⁵JST PRESTO, ⁶National Institute for Materials Science

> **Closing Remarks** 15:30-15:40

Symposium H

Poster Session

Time 14:00-15:30 Room Trade-0

H3-12-P01

Reactive sputtering deposition of distorted rutile-type MO_2 films (M = Nb, Mo, and W)

Kohei FUJIWARA, Atsushi TSUKAZAKI Tohoku University

H3-12-P02

${\rm Fe_2O_3}\mbox{-}{\rm based}$ pn junction solar cell fabricated by electrochemical deposition

Masaya ICHIMURA, Satoshi KOBAYASHI Nagoya Institute of Technology

H3-12-P03

Synthesis of Stoichiometric La-doped \mbox{SrTiO}_3 from Bimetallic Complexes

Ebube OYEKA, Daichi OKA, Tomoteru FUKUMURA Tohoku University

H3-12-P04

A Solution Route for Epitaxial Growth of $\beta\text{-Bi}_2\text{O}_3$ Nanostructures

Zaichun SUN¹, Daichi OKA¹, Tomoteru FUKUMURA^{1,2} ¹Department of Chemistry, Graduate School of Science, Tohoku University, ²WPI Advanced Institute for Materials Research and Core Research Cluster, Tohoku University

H3-12-P05

Metal-insulator transition in anti-Th Cr_2Si_2 -type La_2O_2Bi via excess oxygen incorporation

Kota MATSUMOTO¹, Hideyuki KAWASOKO¹, Tomoteru FUKUMURA^{1,2}

¹Tohoku University, ²WPI-Advanced Institute for Materials Research and Core Research Cluster

H3-12-P06

Photorechargeable Properties of $\alpha\mbox{-}Fe_2O_3/WO_3/FTO$ Triple-layer Coaxial Nanofibers

<u>Taito KUMAMOTO</u> Kagoshima University

H3-12-P07

Application of Ce-doped BiFeO_3 Thin Film to Photoelectric Conversion in Photorechargeable Battery $\underline{\mathsf{Seiga}\;\mathsf{UENO}}$

Kagoshima University

H3-12-P08

Vertically Aligned Electrospun ITO Nanofibers and Their Application for Dye-sensitized Solar Cells Kohei KOBAYASHI

Kagoshima University

H3-12-P09

Acceptor Doping of ZnO Films by NO Gas Decomposition on Heated Ir Wire Surface in a Catalytic Reaction-Assisted CVD

Kanji YASUI¹, Ryuta IBA¹, Koichiro OISHI²,

Hironori KATAGIRI², Ariyuki KATO¹

¹Nagaoka University of Technology, ²National Institute of Technology, Nagaoka College

H3-12-P10

Total conductivity of yttria-stabilized lanthanum germanate fabricated by solid-state reaction method

<u>Takaya TERAI</u>¹, Kiyoshi KOBAYASHI^{1,2}, Tohru HIGUCHI¹, Tohru SUZUKI²

¹Tokyo University of Science, ²National Institute for Materials Science

H3-12-P11

Low Temperature Growth of Rutile ${\rm RuO_2}$ Epitaxial Thin Films by Pulsed Laser Deposition

Zainab FATIMA¹, Daichi OKA¹, Tomoteru FUKUMURA^{1,2} ¹Department of Chemistry, Graduate School of Science, Tohoku University, ²WPI-Advanced Institute for Materials Research and Core Research Cluster, Tohoku University

H3-12-P12

Eliminating Carrier Compensating Defect in Doped ZnO Film by Zn Doping

<u>Yasuji YAMADA</u>, Yumika YAMADA, Rei SUGIURA, Shuhei FUNAKI Shimane University

H3-12-P13

Impedance Measurements of $12CaO \cdot 7Al_2O_3 - 12SrO \cdot 7Al_2O_3$ Solid Solutions Prepared by High-pressure Synthesis

Masashi MIYAKAWA, Kiyoshi KOBAYASHI, Takashi TANIGUCHI National Institute for Materials Science

H3-12-P14

Low Resistivity Doping-free Titanium Oxide Films Fabricated by Plasma-Assisted Deposition

<u>Takahisa ICHINOHE</u>, Hideki OHNO, Kouta SANO, Tadashi UEYAMA

National Institute of Technology, Tokyo College

H3-12-P15

Electric and Magnetic Properties at the Hetero-interface between LaFeO $_3$ and SrTiO $_3$

Hiroaki NISHIKAWA Kindai University

H3-12-P16

Growth and Characterization of Tm Doped Gallium Oxide Films

<u>Qixin GUO</u>, Shunsuke MOTOMURA, Katsuhiko SAITO, Tooru TANAKA Saga University

H3-12-P17

Aerosol-Sprayed Submicrometer Metal Oxide Spheres as Electromagnetic Resonators

<u>Xizhe CHENG</u>, Jianfang WANG The Chinese University of Hong Kong

H3-12-P18

Magnetic and electric properties of near stoichiometric YbFe₂O₄ thin films fabricated by PLD using stoichiometric YbFe₂O₄ target with Fe₂O₃

<u>Junpei TANAKA</u>, Kouhei MIURA, Daisuke KIRIYA, Takeshi YOSHIMURA, Atsushi ASHIDA, Norifumi FUJIMURA Osaka Prefecture University

H3-12-P19

Behaviors of physical property in multiferroic

0.7BaTiO₃-0.3Pr_{0.65}Ca_{0.35}MnO₃ core shell under laser light Osami YANAGISAWA¹, Takashi FUJIMOTO²,

Kazuhiro KITAMURA³

¹Maritime Technology Department, National Institute of Technology, Yuge College, ²Electronic Mechanical Engineering Department, National Institute of Technology, Yuge College, ³Aichi University of Education

H3-12-P20

UV Light Detecting Properties of ZnO Nanorods Grown on lon-plated Ga Doped ZnO Seed Layers by Chemical Bath Deposition

<u>Tomoaki TERASAKO</u>¹, Shohei OBARA¹, Suguru NAMBA¹, Naoto HASHIKUNI¹, Masakazu YAGI², Yutaka FURUBAYASHI³, Tetsuya YAMAMOTO³

¹Ehime University, ²National Institute of Technology (KOSEN), Kagawa College, ³Kochi University of Technology

H3-12-P21

Influence of Seed Layers on Structural and Morphological Properties of Nickel Hydroxide Nanowalls Grown by Chemical Bath Deposition

Tomoaki TERASAKO¹, Yutaka FURUBAYASHI², Tetsuya YAMAMOTO²

¹Ehime University, ²Kochi University of Technology

H3-12-P22

Systematic Control of Current Transport in Metal/Oxide Schottky Junctions Using Highly Uniform Layers of TaO_x

<u>Atsushi FUKUCHI</u>, Yusuke TSUTA, Masashi ARITA, Yasuo TAKAHASHI Hokkaido University

H3-12-P23

Sol-gel Deposition and Direct Patterning of ZnO Thin Films

Koji ABE, <u>Yasuhiro MORIMOTO</u> Nagoya Institute of Technology

H3-12-P24

Thin Iron Oxide Films Grown by Pulsed Laser Deposition

<u>Valentin CRACIUN</u>^{1,4}, M. KOMPITSAS², P. KORALLI², G. MOUSDIS², G. DORCIOMAN¹, Stefan IRIMICIUC¹, Bianca HODOROABA^{1,3}, D. CRACIUN¹, P GAROI¹, M.D. DRACEA⁵, D PANTELICA⁵

¹National Institute for Laser, Plasma and Radiation Physics, ²National Hellenic Research, Foundation, Theor. and Phys./ Chem. Institute, ³University of Bucharest, ⁴Extreme Light Infrastructure-Nuclear Physics, ⁵Horia Hulubei National Institute for Physics and Nuclear Engineering

H3-12-P25

Properties of Titanium Oxide/Titanium Composite Thin Films Formed on Transparent Plastic Substrates Using Magnetron DC Sputtering

<u>Akira WATAZU</u>, Tsutomu SONODA, Kei TERAOKA National Institute of Advanced Industrial Science and Technology

H3-12-P26

Coupled Oscillation of VO_2 Layered Devices without Coupling Capacitor

<u>Ryuta TOBE</u>, Kunio OKIMURA, Md. Suruz MIAN Tokai University

H3-12-P27

A Novel Floating Gate Memory with High Speed based on High-K Material

Lurong GAN Fudan University

H3-12-P28

Magnetic Properties of Ferromagnetic Materials/rplane oriented Cr_2O_3 Multilayers grown on $YAIO_3(001)$ Substrate

Yukiya KUBOTA, Tomohiro TATENO, Hiroki KASHIMOTO, Takeru SATO, <u>Nobuyuki IWATA</u> Nihon University

H3-12-P29

The Growth of $YbFe_2O_4$ Thin Films Prepared by Pulsed Laser Deposition Method with Different Energy Density at the Target Surface and Different Oxygen Partial Pressure

Kyouya HIRAOKA, Takuya OKAMOTO, Takehiro TERAJI, Koudai SAKAMOTO, Syunpei YAMADA, <u>Nobuyuki IWATA</u> Nihon University

H3-12-P30

Flexible Epitaxial Thin Films of Transparent Conducting Oxides

<u>Akihiro HIRAOKA</u>¹, Kohei FUJIWARA², Hiroaki NISHIKAWA³ ¹Graduate School of Biology-Oriented Science and Technology, Kindai University, ²Tohoku University, ³Faculty of Biology-Oriented Science and Technology, Kindai University

H3-12-P31

Electronic Structure Characterization of Spinels $NiCo_2X_4$ (X = 0 and S): GGA and QSGW *ab-initio* Calculations

Hasan AL RASYID¹, Masao OBATA^{1,2}, Indra PARDEDE¹, Marleni WIRMAS¹, Takao KOTANI², Tatsuki ODA^{1,3} ¹Graduate School of Natural Science and Technology, Kanazawa University, ²Institute of Science and Engineering, Kanazawa University, ³Tottori University

H3-12-P32

In-plane Orientations of non c-axis Thin Films of $Bi_2Sr_2CaCu_2O_{8+\delta}$ and their Characterizations by scanning SQUID Microscopy

<u>Shunichi ARISAWA</u>¹, Kazuhiro ENDO², Petre BADICA³ ¹National Institute for Materials Science, ²Kanazawa Institute of Technology, ³National Institute of Materials Physics

H3-12-P33

Characteristics of High-energy H₂O Beam Generated by Catalytic Reaction for the Growth of Metal Oxide Thin Films

<u>Taro SAITO¹</u>, Ryuta IBA¹, Abdul Manaf HASHIM², Kanji YASUI¹

¹Nagaoka University of Technology, ²MJIIT, Universiti Teknologi Malaysia

H3-12-P34

Adsorption of Amino Acids at TiO_x Particles on SrTiO₃ Surfaces Deposited Using Pulsed Laser Deposition

Takuya IMI¹, Hiroaki NISHIKAWA²

¹Graduate School of Biology-Oriented Science and Technology, Kindai University, ²Faculty of Biology-Oriented Science and Technology, Kindai University

- December 11–13, 2019 – Symposium H-4

A3+ Lead-free Piezoelectric Materials and Applications

[Organizers]

Hajime NAGATA (Tokyo University of Science, Japan) Ichiro FUJII (University of Yamanashi, Japan) Satoshi WADA (University of Yamanashi, Japan) Yasuhiro YONEDA (Japan Atomic Energy Agency / SPring-8, Japan) Jing-Feng Li (Tsinghua University, China) Guorong Li (Shanghai Institute of Ceramics, China) Jae-Ho Jeon (Korea Institute of Materials Science, Korea) Shujun Zhang (University of Wollongong, Australia) Naratip Vittayakorn (King Mongkut's Institute of Technology Ladkrabang, Thailand)

December 11, 2019 -

Oral Session 3

Time 16:30-18:30 Room Miel-4

Chairpersons Takuya HOSHINA, Shujun ZHANG

H4-11-I01 ► Invited

16:30-17:00

Temperature- and Field-Dependent Local Structure in BaTiO₃ Materials Studied by Synchrotron X-Ray Absorption Spectroscopy Rattikorn YIMNIRUN

VISTEC

H4-11-I02 ► Invited

17:00-17:30

Structural Modeling Technique for Crystalline Metal Nanoparticles by X-ray Total Scattering Data Satoshi HIROI¹, Koji OHARA², Osami SAKATA¹

¹National Institute for Materials Science, ²Japan Synchrotron Radiation Research Institute

H4-11-I03 ► Invited

17:30-18:00

Relationship between Structure and Physical Properties of Phosphate Glasses

Hirokazu MASAI¹, Shinji KOHARA², Yohei ONODERA³, Takahiro OHKUBO⁴, Akitoshi KOREEDA⁵

¹National Institute of Advanced Industrial Science and Technology, ²National Institute for Materials Science, ³Kyoto University, ⁴Chiba University, ⁵Ritsumeikan University

H4-11-004

18:00-18:15

Structural Phase Transitions and Improper Ferroelectricity in Aluminate-Sodalite-type Oxides

Hiroki TANIGUCHI¹, Chikako MORIYOSHI²,

Hiroki MORIWAKE³, Ichiro TERASAKI¹ ¹Nagoya University, ²Hiroshima University, ³Japan Fine Ceramics Center

H4-11-005

Local structure analysis of (Na_{0.5}K_{0.45}Li_{0.05})NbO₃-based system with tetragonal structure <u>Yasuhiro YONEDA</u> Japan Atomic Energy Agency

18:15-18:30

December 12, 2019 **Oral Session 4** Time 9:00-11:00 Room Miel-4 Chairpersons Jing-Feng LI, Satoshi WADA H4-12-I01 Invited 9:00-9:30 Ferroelectric Structural Phase Transition and Staggered Phase Transition in Lead-Free Piezoelectric KNN Takayuki MATSUOKA, Masato YAMAZAKI NGK SPARK PLUG CO., LTD. H4-12-I02 ►Invited 9.30-10.00 The electric fatigue resistance and temperaturedependent piezoresponse of KNN-based ceramics Jiwei ZHAI Tongji University H4-12-I03 ►Invited 10:00-10:30 Lead-free Potassium-Sodium Niobate Ceramics: From Property to Devices Jiagang WU Sichuan University H4-12-004 10:30-10:45 Fabrication and piezoelectric properties of (K_{0.5}Na_{0.5})NbO₃ single crystals by solid-state crystal growth method Ichiro FUJII, Shintaro UENO, Satoshi WADA University of Yamanashi H4-12-005 10:45-11:00 Composition design, structure and properties of niobatebased ceramics Dong YANG

Tsinghua University

- December 12, 2019 -

Oral Session 6

Time 16:30-18:45 Room Miel-4

Chairpersons Yasuhiro YONEDA, Rattikorn YIMNIRUN

H4-12-I06 ► Invited

16:30-17:00

AgNbO₃-based Lead-free Antiferroelectrics for Energy Storage Applications

<u>Jing-Feng LI</u> Tsinghua University 17:00-17:30

Crystal Structures and Dielectric Properties of Perovskite-Type Mixed-Anion Compound

Takuya HOSHINA, Hiroaki TAKEDA, Takaaki TSURUMI Tokyo Institute of Technology

H4-12-I08 ► Invited

17:30-18:00

Bismuth Ferrite based solid solution piezoelectric/ ferroelectric materials and their applications

Zhenxiang CHENG University of Wollongong

H4-12-009

18:00-18:15

Electromechanical and electrocaloric properties of NaNbO₃ and (Pb,La)(Zr,Ti)O₃ ceramics

Hiroshi MAIWA, Atsushi SAKURAI, Yugeng LIU Shonan Institute of Technology

H4-12-I10 ► Invited

18:15-18:45

Improve photocatalysis property of ferroelectric oxides Yaodong YANG, Bian YANG Xi'an Jiaotong University

December 13, 2019 **Oral Session 7** Time 9:00-11:00 Room Miel-4 Chairpersons Naratip VITTAYAKORN, Hajime NAGATA H4-13-I01 Invited 0.00-0.30

Processing and Properties of (Bi_{1/2}K_{1/2})TiO₃-based **Piezoelectric Ceramics**

Manabu HAGIWARA, Makoto ITO, Shinobu FUJIHARA Keio University

H4-13-I02 Invited

9:30-10:00

Large electrostrain response in Mn-modified 0.94(Bi_{0.5}Na_{0.5})TiO₃-0.06BaTiO₃ lead-free piezoceramics Danyang WANG, Le ZHANG, Haoyu WANG **UNSW Sydney**

H4-13-I03 ► Invited

10:00-10:30

10:30-10:45

Combustion Synthesis and Properties of $0.94Bi_{0.5}Na_{0.5}TiO_3\text{-}0.06Ba_{0.85}Ca_{0.15}Ti_{0.90}Zr_{0.10}O_3\ ceramics$ doped with Bi₂FeCrO₆

Theerachai BONGKARN Naresuan University

H4-13-004

Perovskite Na0.5Bi0.5TiO3: Potential Family of Peculiar

Lead-free Electrostrictors Jie YIN Sichuan University

H4-13-005

10:45-11:00

AC Poling Treatment in Grain-oriented BT-BNT **Piezoceramics** Satoshi WADA University of Yamanashi

December 13, 2019

Oral Session 8

Time 14:00-15:30 Room Miel-4

Chairpersons Ichiro FUJII, Theerachai BONGKARN

H4-13-I06 ► Invited

14:00-14:30

NBT and KNN based textured and non-textured lead free ceramics Shujun ZHANG¹, Xiaoyi GAO^{1,2}, Hua HAO², Hanxing LIU²,

Nannan DONG², Peng LI³, Jiwei ZHAI³ ¹University of Wollongong, ²Wuhan University of Technology, ³Tongji University

H4-13-I07 ► Invited

14:30-15:00

15:00-15:15

15:15-15:30

Conceivable strategies for making Lead-free piezoelectrics practical

Wook JO

Ulsan National Institute of Science and Technology

H4-13-008

A Template-free Salt-flux-assisted Synthesis of Tetragonal BaTiO₂ Nanowires and Its Piezoelectric **Response for Flexible Nanogenerators**

Thitirat CHAROONSUK¹, Saichon SRIPHAN¹, Chanisa NAWANIL², Narong CHANLEK³, Wanwilai VITTAYAKORN¹, Utchawadee PHARINO¹, Naratip VITTAYAKORN¹

¹King Mongkut's Institute of Technology Ladkrabang, ²Udon Thani Rajabhat University, ³Synchrotron Light Research Institute

H4-13-009

Dielectric Anomalies Suppression of Co-doped BaZrO₃ with Ultrahigh Q-factor

Phieraya PULPHOL¹, Rangson MUANGHLUA¹, Naratip VITTAYAKORN¹, Taras KOLODIAZHNYI², Wanwilai VITTAYAKORN¹

¹King Mongkut's Institute of Technology Ladkrabang, ²National Institute for Material Science

– December 12, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

H4-12-P01

Quenting Effects for Depolarization Temperature on $(Bi_{0.5}Na_{0.5})TiO_3$ -ZnO Ceramics by Controlling the Firing Conditions

<u>Yuto ITAKURA</u>, Yuka TAKAGI, Hajime NAGATA, Tadashi TAKENAKA Tokyo University of Science

H4-12-P02

Preparation and Characterization of Graphene/Bi(Fe,Mn)O₃ Structure on $SrRuO_3$ -buffered $SrTiO_3$ Substrate

<u>Seiji NAKASHIMA</u>, Sho YAMAGATA, Yakumo FUCHIWAKI, Satoru SUZUKI, Hironori FUJISAWA University of Hyogo

H4-12-P03

 $\label{eq:Fabrication} Fabrication of 111-Oriented BaTiO_3 Ceramics by a High-Magnetic-Field-Assisted Electrophoretic Deposition Method with Co-Existing Hexagonal-Tetragonal Phases of BaTiO_3 Powders$

<u>Hari Shankar MALLIK</u>, Sangwook KIM, Ichiro FUJII, Shintaro UENO, Satoshi WADA University of Yamanashi

H4-12-P04

High-Power Piezoelectric Properties of Mn-doped $(Bi_{0.5}Na_{0.5})TiO_3\text{-}(Bi_{0.5}K_{0.5})TiO_3\text{-}BaTiO_3$ based ceramics at MPB composition

Tomoya UENO, Yuka TAKAGI, Hajime NAGATA, Tadashi TAKENAKA Tokyo University of Science

H4-12-P05

High-Power Piezoelectric Characteristics of $MnCO_3$ and CuO Co-Doped Ba(Zr,Ti)O₃-(Ba,Ca)TiO₃ Ceramics

<u>Takuo TOMINAGA</u>, Yuka TAKAGI, Hajime NAGATA, Tadashi TAKENAKA Tokyo University of Science

H4-12-P06

The quenching effects for depolarization temperature of (Bi_{0.5}Na_{0.5})TiO₃ ceramics with various dopants Koutaro EGUCHI, Yuka TAKAGI, Hajime NAGATA,

Koutaro EGUCHI, Yuka TAKAGI, Hajime NAGATA, Tadashi TAKENAKA Tokyo University of Science

H4-12-P07

Investigation of Mn-Nb Co-doped Barium Titanate Ceramics for DC-bias free Dielectrics

<u>Piyush SAPKOTA</u>, Ichiro FUJII, Shintaro UENO, Satoshi WADA University of Yamanashi

H4-12-P08

Structural and Piezoelectric Properties of Lead-free Piezoelectric Ceramics in the BaTiO₃-BiFeO₃

<u>Hyunwook NAM</u>, Ichiro FUJII, Sangwook KIM, Shintaro UENO, Satoshi WADA University of Yamanashi

H4-12-P09

Structure analysis of (Ca,Ba)Nb₂O₅ ceramic powder from high-energy X-ray diffraction

Yasuhiro YONEDA Japan Atomic Energy Agency

H4-12-P10

The $BaTiO_3/PDMS$ Composite Film Modified with $Ti_{0.8}O_2$ Nanosheets and Silver Nanopowders for Flexible Nanogenerators

<u>Naratip VITTAYAKORN</u>, Saichon SRIPHAN, Thitirat CHAROONSUK, Tosapol MALUANGNONT King Mongkut's Institute of Technology Ladkrabang

Intelligent Material Processes with Low Environmental Load and Energy Consumption

Organizers

Nobuhiro MATSUSHITA (Tokyo Institute of Technology) Tomoaki WATANABE (Meiji University) Hajime WAGATA (Meiji University) Yung-Jung HSU (National Chiao Tung University) Ferry ISKANDAR (Institute of Technology Bandung)

Sponsors

Rigaku Corporation

December 11, 2019

Oral Session 3

Time 16:30-18:35 Room Mont-5

Chairpersons Ken-ichi KATSUMATA, Tomoaki WATANABE

> Opening Nobu Matsushita (Tokyo Tech) 16:30-16:35

H5-11-K01 ► Keynote

16:35-17:15

17:15-17:40

Semiconductor Nanoheterostructures for **Photoconversion Applications**

Yung-Jung HSU National Chiao Tung University

H5-11-I02 ► Invited

Behavior of Photogenerated Charge Carriers on Powder

Photocatalysts

Akira YAMAKATA Toyota Technological Institute

Break

17:40-17:50

H5-11-003

Hydrothermal Synthesis of Rutile-type Titania Crystals with Pseudocubic Shapes

Makoto KOBAYASHI¹, Hideki KATO², Minoru OSADA¹, Masato KAKIHANA²

¹Institute of Materials and Systems for Sustainability, Nagoya University, ²Institute of Multidisciplinary Research for Advanced Materials, Tohoku University

H5-11-004

One-pot synthesis of (B/A)-TiO₂ nanosheet/Carbon dot heterostructure for enhanced visible-light-photocatalysis

Sovann KHAN¹, Norihiro SUZUKI¹, Kazuya NAKATA², Chiaki TERASHIMA¹, Akira FUJISHIMA¹, Ken-ichi KATSUMATA¹ ¹Tokyo University of Science, ²Tokyo University of

Agriculture and Technology

H5-11-005

18:20-18:35

9:00-9:15

9:15-9:30

9:45-10:00

TiO₂ Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production

Ping-Yen HSIEH

Department of Materials Science and Engineering, National Chiao Tung University

December 12, 2019

Oral Session 4

Time 9:00-11:30 Room Trade-2

Chairpersons Hajime WAGATA, Sayaka YANAGIDA

H5-12-001

Design of Full-Spectrum-Drive Photoelectrodes for Water Splitting

Yu Ting WANG Material Science and Engineering of Chiao Tung University

H5-12-002

Tin Sulfide Colloidal Nanocrystals: Synthesis and Characterization

Retno MIRANTI¹, Satria Zulkarnaen BISRI^{2,1} Yoshihiro IWASA^{2,3}, Nobuhiro MATSUSHITA¹ ¹Tokyo Institute of Technology, ²RIKEN Center for Emergent Matter Science (CEMS), ³The University of Tokyo

H5-12-003

9:30-9:45 Facet Effect of Au@CdS Yolk@Shell Nanocrystals on

Photocatalytic Hydrogen Production Yi-An CHEN, Yung-Jung HSU Department of Materials Science and Engineering, National

Chiao Tung University

H5-12-004

Significant Performance of Ammonia Borane Dehydrogenation Using Au@Cu₂O Core@Shell Nanocrystals

Mei Jing FANG National Chiao Tung University 17:50-18:05

18:05-18:20

H5-12-005

Preparation of Au@Cu₂O Core-shell Particles on Rutile Rods using Step-by-step Photocatalytic Deposition and Investigation of their Photocatalytic Cr(IV) Reduction Ability

<u>Sayaka YANAGIDA</u>, Takumi YAJIMA, Takahiro TAKEI, Nobuhiro KUMADA University of Yamanashi

> Break 10:15-10:25

H5-12-I06 ► Invited

10:25-10:50

Microwave-assisted Synthesis of Carbon

Nanostructured Materials and Its Physical Properties Ferry ISKANDAR^{1,2}, Fitri A. PERMATASARI¹

¹Institut Teknologi Bandung, ²Research Center for Nanosciences and Nanotechnology

H5-12-I07 ► Invited

10:50-11:05

Solution Plasma and Hetero-Graphene SANGWOO CHAE^{1,3}, PHUWADEJ PORNAROONTHAM^{1,3}, <u>NAGAHIRO SAITO</u>^{1,2,3,4}

¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Conjoint Research Laboratory in Nagoya University, Shinshu University, ³Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁴Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-12-008

11:05-11:30

Preparation of Nanosheets by Using Ionic Liquids

<u>Ken-ichi KATSUMATA</u>¹, Tetsuya YAMADA², Yuta KUBOTA³, Yuki MAKINOSE⁴, Norihiro SUZUKI¹, Kazuya NAKATA⁵, Chiaki TERASHIMA¹, Nobuhiro MATSUSHITA³, Akira FUJISHIMA¹

¹Tokyo University of Science, ²Kanagawa Institute of Industrial Science and Technology, ³Tokyo Institute of Technology, ⁴Shimane University, ⁵Tokyo University of Agriculture and Technology

December 12, 2019 –

Oral Session 5

Time 14:00-16:00 Room Trade-2

Chairpersons Ferry ISKANDAR, Yoshitake MASUDA

H5-12-I09 ► Invited

14:00-14:25

Intelligent Material Processes with Low Environmental Load and Energy Consumption for Nanostructuring of Metal Oxides -Gas/Chemical Sensors with SnO_2 , TiO_2 , ZnO-

Yoshitake MASUDA

National Institute of Advanced Industrial Science and Technology (AIST)

H5-12-010

Liquid-phase Synthesis of Pt-loaded Y₂WO₆:Eu³⁺

Phosphor Particles for Hydrogen Gas Sensing Hong YE, Manabu HAGIWARA, Shinobu FUJIHARA Keio University

H5-12-011

Preparation and Gas Sensor Characteristics of Ni-Zn Ferrite Thin Film Deposited on Porous Silicon

Hiroki ISHIGAMI

Department of Electronics Science, Shizuoka University

Break 14:55-15:00

H5-12-012

14:25-14:40

14:40-14:55

Low environmental loading process: Spin spray for thin film deposition of functional metal oxides

<u>Hwai En LIN</u>, Yuta KUBOTA, Nobuhiro MATSUSHITA Tokyo Institute of Technology

H5-12-013

15:15-15:30

15:30 - 15:45

15:45-16:00

Preparation of transparent conductive ZnO film by Non-Seed CBD method

<u>Naoya SHIOIRI</u>, Hajime WAGATA Meiji University

H5-12-014

Resistive Switching Properties of Liquid Phase Deposited Cerium Oxide Films

<u>Yuta KUBOTA</u>, Tetsuya FURUKAWA, Nobuhiro MATSUSHITA Tokyo Institute of Technology

H5-12-015

Liquid-phase Synthesis and Morphology Control of Ferroelectric BiFeO₃ Particles for Stress Sensing Applications Kohei YOSHIYAMA, Manabu HAGIWARA,

Shinobu FUJIHARA Keio University

December 12, 2019

Oral Session 6

Time 16:30-18:25 Room Trade-2

Chairpersons Masamoto TAFU, Hiroyuki MUTO

H5-12-K16 • Keynote

-246-

16:30-17:10

Intelligent Material Processes with Ceramic Nanocrystals <u>Minoru OSADA</u> Nagoya University

^{15:00-15:15}

H5-12-I17 Invited

17:10-17:35

Advanced Composite Particles Integration Process via Electrostatic Assembly Method

Hiroyuki MUTO, Atsushi YOKOI, Wai Kian TAN, Go KAWAMURA, Atsunori MATSUDA Toyohashi University of Technology

> Break 17:35-17:45

H5-12-I18 Invited

Development of Functional Coatings Showing Paradoxical Surface Wetting/Dewetting Properties

ATSUSHI HOZUMI AIST

H5-12-019

18:10-18:25

17:45-18:10

Development of novel sol-gel based surface initiator layers for surface-initiated ATRP (SI-ATRP)

Tomoya SATO¹, Gary J. DUNDERDALE^{1,2}, Chihiro URATA¹, Atsushi H07UMI¹

¹National Institute of Advanced Industrial Science and Technology (AIST), ²Department of Chemistry, University of Sheffield

December 13, 2019

Oral Session 7

Time 9:00-11:30 Room Mont-5

Chairpersons Yuta KUBOTA, Naonori SAKAMOTO

H5-13-I01 Invited 9.00 - 9.25

Bioaccumulation and biomineralization on a radural teeth of chiton, Achanthopreura japonica.

Chiya NUMAKO Chiba University

H5-13-I02 Invited 9:25-9:50

Effect of hybridization on reactivity of dicalcium phosphate dihydrate (DCPD) by apatites nano-particles for solidification of fluoride ions

Masamoto TAFU, Natsuki OKAJIMA, Takeshi TOSHIMA, Saori TAKAMATSU

National Institute of Technology, Toyama College

H5-13-003

9:50-10:05

Effective Tellurium Recovery from Bi-Sb-Te Intermetallic Solid Materials by Wet Mechanochemical Technique

Ryo SASAI¹, Takuya FUJIMURA¹, Kazushi URABE¹, Takuya SANO²

¹Shimane University, ²ARBIZ Corporation

Break 10:05-10:20 H5-13-I04 ► Invited 10:20-10:45 New Type Solid-State Reaction, Water-Assisted Solid-State Reaction Kenji TODA Niigata University H5-13-005 10:45-11:00 Cement sludge recycling system using sodium gluconate Daiki ATARASHI¹, Hiroshi FURUI¹, Eiji SUNADA³, Eiichi KATSUBE⁴, Yuichi TSUKADA⁵ ¹Shimane University, ²Hiroshima Area Concrete Cooperative Association, ³Maruse, ⁴Kitagawa Corporation, ⁵DKK-TOA Corporation H5-13-006 11.00-11.15 Controlled Fabrication of Textured and Porous Ca₃Co₄O₉ Ceramics and Their Thermoelectric Property

Rina SHIMONISHI, Manabu HAGIWARA, Shinobu FUJIHARA Keio University

H5-13-007

Growth and characterization of Li_xLa_{(1-x)/3}NbO₃ single crystals by TSFZ method MD SHAHAJAN ALI CCST, University of Yamanashi

December 13, 2019

Oral Session 8

Time 14:00-16:00 Room Work-5

Chairpersons Chiya NUMAKO, Akifumi MATSUDA

H5-13-I08 ► Invited

14:00 - 14:25

11:15-11:30

Preparation of Ultrathin Nanosheet pn-Junction and Photocatalytic Activity

Shintaro IDA, Keisuke AWAYA Kumamoto University

H5-13-009

Solution-Phase Ligand-Exchange of Lead Sulfide Colloidal Quantum Dot for Facile Thick Film Fabrication

<u>Ricky Dwi SEPTIANTO</u>^{1,2}, Satria Zulkarnaen BISRI^{1,2}, Nobuhiro MATSUSHITA², Yoshihiro IWASA^{1,3} ¹RIKEN CEMS, ²Tokyo Institute of Technology, ³The University of Tokyo

H5-13-010

Room-temperature epitaxy and optoelectronic properties of heavily doped Ni_{1-x}Fe_xO thin films

Akifumi MATSUDA¹, Seo OKKYUN², Osami SAKATA^{2,1}, Mamoru YOSHIMOTO¹

¹Tokyo Institute of Technology, ²National Institute for Materials Science

> Break 14:55-15:05

14:25-14:40

H5-13-I11	►Invited
Growth Me	chanism of mist CVD

Toshiyuki KAWAHARAMURA^{1,2,3}, Li LIU^{1,2,3}, Phimolphan RUTTHONGJAN², Shota SATO², Mariko UEDA², Tatsuya YASUOKA², Yuki TAGASHIRA², Tamako OZAKI², Yuna ISHIKAWA¹, Miyabi FUKUE¹, Giang T. DANG^{1,2,} ¹School of Sys. Eng., Kochi University of Technology, ²Eng. Course, Graduate School of Engineering, Kochi University of Technology, ³Center for Nanotechnology, Res. Inst., Kochi University of Technology

H5-13-012

15:30-15:45

15:05-15:30

Development of Electrostatic LSMCD, and Preparation and Characterization of Alumina Thin Film

Takuma SUZUKI, Takahiko KAWAGUCHI,

Naonori SAKAMOTO, Hisao SUZUKI, Naoki WAKIYA Department of Electrics and Materials Science, Shizuoka University

H5-13-013

15:45-16:00

Analysis of ferroelectric thin films by cross sectional AFM

Naonori SAKAMOTO, Satoshi MIYAZAKI, Kohei KASAMI, Takahiko KAWAGUCHI, Naoki WAKIYA, Hisao SUZUKI Shizuoka University

December 13, 2019

Oral Session 9

Time 16:30-18:25 Room Work-5

Chairpersons Shitaro IDA, Shintaro YASUI

H5-13-I14 Invited

16:30-16:55

Development of high power blue diode laser for additive manufacturing of pure copper

Masahiro TSUKAMOTO

Joining and Welding Research Institute, Osaka University

H5-13-015

16:55-17:10

Ultra-high Rate Performance of LiCoO₂ Cathode Thin Film Battery

Shintaro YASUI¹, Sou YASUHARA¹, Takashi TERANISHI². Yumi YOSHIKAWA², Tomoyasu TANIYAMA³, Mitsuru ITOH¹ ¹Tokyo Institute of Technology, ²Okayama University, ³Nagoya University

H5-13-016

17:10-17:25

Preparation of YSZ Thin Film on Through-Hole-Type Porous Silicon

Hiroki NAKANE

Department of Electronics Science, Shizuoka University

Break 17:25-17:40

H5-13-017

Development of Novel Dynamic Aurora PLD which Enables in-situ Observation of Epitaxial Growth of Ceramic Thin Films

Mayu YOSHIDA

Department of Electronics Science, Shizuoka University

H5-13-018

Preparation of Ca₃Co₄O₉ Thin Film by Dynamic Aurora PLD

Tetsunari TANADA, Takahiko KAWAGUCHI, Naonori SAKAMOTO, Hisao SUZUKI, Naoki WAKIYA Department of Electronics and Materials Science, Shizuoka University

H5-13-019

18:10-18:25

Perpendicular Magnetic Anisotropy in Nickel Ferrite Thin Films

Keisuke TAKASHIMA¹, Nipa DEBNATH¹, Takahiko KAWAGUCHI¹, Naonori SAKAMOTO¹, Kazuo SHINOZAKI², Hisao SUZUKI¹, Naoki WAKIYA¹ ¹Shizuoka University, ²Tokyo Tech

> Closing Nobuhiro Matsushita (Tokyo Tech) 18:25~

December 13, 2019

Poster Session

Time 19:00-20:30 Room Trade-0

H5-13-P01

Synthesis of Xonotlite in Cement-Silica-Portlandite system

Yuta MORIMOTO¹, Daiki ATARASHI¹, Kouichi IMASAWA² ¹Shimane University, ²Sumitomo Metal Mining Siporex

H5-13-P02

Effect of calcium nitrite on hydration of blast furnace slag

Shuya OSAKI¹, Daiki ATARASHI¹, Hyeonjin SONG¹, Yuhji SUDOH²

¹Shimane University, ²Nissan Chemical Co., Ltd

H5-13-P03

Effect of Alkanolamine on reaction of 4CaO·Al₂O₃·Fe₂O₃

Hyeonjin SONG¹, Daiki ATARASHI², Yoshifumi HOSOKAWA³, Miho MIYAKAWA⁴

¹Shimane University, ²Shimane University, ³TAIHEIYO CEMENT CORPORATION, ⁴GCP Chemicals CO.,LTD

17:55-18:10

H5-13-P04

Highly Cationic Nitrogen-doped Graphene to Enhance Electric Properties via Solution Plasma

SANGWOO CHAE^{1,4}, GASIDIT PANOMSUWAN², NAGAHIRO SAITO^{1,3,4,5}

¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Department of Materials Engineering, Faculty of Engineering, Kasetsart University, ³Conjoint Research Laboratory in Nagoya University, Shinshu University, ⁴Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁵Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-13-P05

Synergistic Effect of Electrical Properties of Cationic Nitrogen-Doped Carbon and Carbon Nanotubes Composites Synthesized via Plasma Solution.

Sangwoo CHAE^{1,3}, <u>Takumi YANA¹</u>, Nagahiro SAITO^{1,2,3,4} ¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Conjoint Research Laboratory in Nagoya University, Shinshu University, ³Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁴Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-13-P06

Investigation of N-doped Carbon Dots Synthesized by Solution Plasma for Detection of Nitro Aromatic Molecules

Kyusung KIM^{1,3}, <u>Junmo MOON¹</u>, Nagahiro SAITO^{1,2,3,4} ¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Conjoint Research Laboratory in Nagoya University, Shinshu University, ³Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁴Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-13-P07

Analyzing properties of nitrogen, boron and nitrogenboron doped few-layer graphene coated copper nanoparticles synthesized by solution plasma for oxygen reduction reaction catalyst

<u>Phu Quoc PHAN</u>¹, Kyusung KIM^{1,3}, Yukihiro MUTA^{1,3}, Mongkol TIPPLOOK^{1,3}, Sangwoo CHAE^{1,3}, Nagahiro SAITO^{1,2,3,4}

¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Conjoint Research Laboratory in Nagoya University, Shinshu University, ³Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁴Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-13-P08

Synthesis of nitrogen-oxygen-codoped nanocarbons via solution plasma process and nitridation for $\rm CO_2$ adsorption

PHUWADEJ PORNAROONTHAM^{1,4},

GASIDIT PANOMSUWAN², NAGAHIRO SAITO^{1,3,4,5} ¹Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, ²Department of Materials Engineering, Faculty of Engineering, Kasetsart University, ³Conjoint Research Laboratory in Nagoya University, Shinshu University, ⁴Japan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), ⁵Japan Science and Technology Corporation (JST), Strategic International Collaborative Research Program (SICORP)

H5-13-P09

Development of fabrication process for BaTaO₂N photoanodes using roll press method and calcination

<u>Mizuki ITO</u>, Tomoaki WATANABE Meiji University

H5-13-P10

Development of fabrication method for layered photoanodes by using roll press method <u>Mai IIJIMA</u>, Tomoaki WATANABE

Meiji University

H5-13-P11

Synthesis and Evaluation of Sphere-like CuO Films on Conductive Substrates by Direct Annealing Method Ryo NISHIDA, Tomoaki WATANABE Meiji University

H5-13-P12

$Cu_{2x}O$ -Fe₂O₃ Composite Films Prepared By Low Temperature Solution Process

<u>Kazuya SHIMADA</u>, Hwai-En LIN, Yuta KUBOTA, Nobuhiro MATSUSHITA Tokyo Institute of Technology

H5-13-P13

Growth and characterization of LiCoO₂ single crystals by Traveling Solvent Floating Zone(TSFZ) technique using tilted-mirror type furnace.

<u>Ruma PARVIN</u> University of Yamanashi

H5-13-P14

Synthesis of Nano LiCoO_2 by Water-Assited Solid-State Reaction Method

<u>Tsukasa HOSHI</u> Graduate School of Niigata University

H5-13-P15

Electrochemical properties of $Cu_{2\cdot x}O$ - α Fe₂O₃ composite film for supercapacitor Michihiko UEMURA

Tokyo Institute of Technology

H5-13-P16

Optimization of doping amount of upconversion phosphor by parallel synthesis using complex gelation method

Kohei KASUYA¹, Sayaka TAMURA², Yasushi SATO³, Makoto KOBAYASHI⁴, Hideki KATO⁵, Masato KAKIHANA⁵, Koji TOMITA¹

¹Tokai University, ²Kanagawa University, ³Okayama University of Science, ⁴Nagoya University, ⁵Tohoku University

H5-13-P17

A New Low-Temperature Synthesis of K_2NbO_3F with NH_4F as a Fluorinating Agent

Masaru WATANABE

Graduate School of Science and Technology, Niigata University

H5-13-P18

Ca - Al - O: (Eu, Nd) phosphors synthesized on mortar hardened body

Keiji KOMATSU¹, Tetsuro KIMURA¹, Atsushi NAKAMURA², Hidetoshi SAITOH¹

¹Nagaoka University of Technology, ²Chubu Chelest

H5-13-P19

Pure Copper Film Welding with Near Infrared and Blue Diode Lasers

<u>Kento MORIMOTO</u>¹, Masahiro TSUKAMOTO², Shin-ichiro MASUNO², Yuji SATO³, Kazuyuki AZUMI⁴, Yoshihiko HAYASHI⁴

¹Graduate School of Engineering, Osaka University, ²Joining and welding research institute, Osaka University, ³Japan Atomic Energy Agency, ⁴Osaka Fuji Corporation

H5-13-P20

Formation of aligned peptide films by blade coating and their structural analysis

<u>Kazunori MOTAI</u> Tokyo Institute of Technology

H5-13-P21

Fabrication of Bioactive and Antibacterial Nanostructured Surface on Ti-based BMG Surface by Hydrothermal-Electrochemical Process

Nobuhiro MATSUSHITA Tokyo Institute of Technology

H5-13-P22

Effect of crystallinity of FAp (fluorapatite) on adsorption of ammonia gas <u>Aoi IWAORI</u> National Institute of Technology, Toyama College

H5-13-P23

Analytical Research on Preservation and Restoration Method of Excavated Ancient Coins

Yuko NISHIMOTO¹, Yuki AOYANAGI¹, Shinya NAGASAKO² ¹Kanagawa Univ., ²Tokyo metropolitan Archaeological Center

H5-13-P24

Simultaneous Formation Process of Ti₃SiC₂/TiC Composite Films from Their Elemental Materials

<u>Tsutomu SONODA</u>, Akira WATAZU, Setsuo NAKAO National Institute of Advanced Industrial Science and Technology

H5-13-P25

Improvement Of Packing Structure Of Green Body Via Electrostatic Nano-Assembly Technique

Ryota OGASAWARA

Toyohashi University of Technology

H5-13-P26

Orientation controlled room-temperature growth of ZnO (0001) thin films on atomic-step patterned flexible polymer substrates

Tomoaki OGA¹, Hiroyuki MORITA¹, Satoru KANEKO^{2,1}, Akifumi MATSUDA¹, Mamoru YOSHIMOTO¹ ¹Tokyo Institute of Technology, ²Kanagawa Institute of Industrial Science and Technology

H5-13-P27

Preparation of Zinc Oxynitride Thin Films by a Solution Process and Subsequent Nitridation

<u>Shota EBARA</u>, Hajime WAGATA Meiji University

H5-13-P28

Growth of ZnO Mesocrystals Using Mixed Solvents of Choline Chloride – Urea Deep Eutectic Solvent and Ethylene Glycol

<u>Hajime WAGATA</u>¹, Eriko NAKASHIMA¹, Motoki ASAGA¹, Masaru TADA², Kunio YUBUTA³

¹Meiji University, ²Tokyo Institute of Technology, ³Tohoku University

Symposium

-250-

Cluster I Biopolymers

Symposium

- I-1 Bio-based Polymers
- I-2 Environmentally Degradable Polymers
- I-3 Biodegradable Polymers for Biomedical Applications

– December 13, 2019 – Symposium I-1

Bio-based Polymers

[Organizer]

Hideki ABE (RIKEN CSRS)

December 13, 2019

Oral Session 7

Time 9:00-11:20 Room Mont-1

Chairpersons Hideki ABE, Takeharu TSUGE

1112-13-001

9:00-9:15

Development of Heat-resistant Polymeric Materials from Bio-based Chemicals

Hideki ABE RIKEN Center for Sustainable Resource Science

I1I2-13-K02 ► Keynote

9:15-9:45

Controlled/Living Polymerization of Functional Styrenes from Natural Resources

<u>Kotaro SATOH</u> Tokyo Institute of Technology

1112-13-003

9:45-10:00

Fabrication of Multiple Parallel Gel Filaments by Applying Shear to Polymer Assembly <u>Yuriko TAKAYAMA</u>, Norihiro KATO Utsunomiya University

1112-13-104 Invited

10:00-10:20

Protease-catalyzed Polymerization for Synthesis of Polypeptides with Specific Sequence Motifs

Kousuke TSUCHIYA^{1,2}, Keiji NUMATA^{1,2} ¹RIKEN, ²JST-ERATO

1112-13-105 Invited

10:20-10:40

Microsphere with Dimple Morphology Prepared from Ferulic Acid <u>Hironori ATARASHI</u>

Okayama University

1112-13-106 Invited

10:40-11:00

Thermally Conductive Hierarchical Molecular Assemblies Based on Filamentous Viruses

Toshiki SAWADA^{1,2}

¹Tokyo Institute of Technology, ²PRESTO-JST

1112-13-107 ► Invited

11:00-11:20

New Polyhydroxyalkanoate Biosynthesis Utilizing Metabolic Pathways for Amino Acid and Fatty Acid

<u>Takeharu TSUGE</u> Tokyo Institute of Technology December 13, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

I1-13-P01

Characterization of Porous Ti6Al4V/Bio-based Polymer Composites for Improved Biocompatibility

Mari MIYATA¹, Naritoshi AOYAGI¹, Kasumi FURUYA¹, Shota FUNAMI¹, Chuen Kum LEE² ¹National Institute of Technology, Nagaoka College, ²Nanyang Polytechnic, School of Engineering

I1-13-P02

Fabrication of Insulin-like Growth Factor-1 Conjugated IPN gel and Controlling Length of the Conjugation Linker for Enhancement of the Embedded Chondrocytes Function

<u>Hiro YAMAGUCHI</u>¹, Shohei ISHIKAWA¹, Shigehito OSAWA^{1,2}, Michihiro IJIMA³, Hidenori OTSUKA^{1,2}

¹Graduate School of Science, Tokyo University of Science, ²Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, ³Department of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College

Quantum chemistry towards Fugaku Takahito NAKAJIMA RIKEN

Invited

12-12-106

December 12, 2019

Oral Session 6

Time 16:30-18:30 Room Mont-4

	Chairperso	on Yoshitumi AMAMOTO	
95 Mont-4	I2-12-I07 Silk-based Keiji NUM RIKEN	▶ Invited materials as eco-friendly material ATA	16:30-16:50
	of Circular <u>Hiroshi SA</u>	► Invited Plastics and Biodegradable Plastics Economy? - <u>NO</u> i Chemical Corporation	16:50-17:10 s - Solution
14:00-14:30 ollution research in	I2-12-I09 Biodegrada environme <u>Ken-ichi K</u> Gunma Ur	ASUYA	17:10-17:30 marine
14:30–14:50 of microplastics on NG, Yi LIN se Academy of	engineerin Shunsuke Sho FURU	▶ Invited ive Production of PHBH and metal g for regulation of its material prop SATO, Hisashi ARIKAWA, Yoshihiro N ITATE CORPORATION	perties
14:50-15:05 ation of Materials	Kei HIROS	► Invited ation and its application to polyme E ¹ , Keisuke TERAMOTO ¹ Iniversity, ² RIKEN Center for Advance be Project	
15:05–15:25 ocess Design rials Informatics, rmatics	I2-12-I12 Simulation Materials Ryuichi SA TOSOH	▶ Invited and Informatics for Research of F AKASHITA	18:10-18:30 Polymer
15:25–15:45 Iment: forward on in MI			

Sijun Dong (Institute of Urban Environment, Chinese Academy of Sciences) December 12, 201 **Oral Session** Time 14:00-16:00 Room Chairperson Jun KIKUCHI Opening Talk Jun Kikuchi 14:00-14:00 I2-12-K01 ▶Keynote Recent advances in marine plastic p Japan Atsuhiko ISOBE Kyushu University 12-12-102 Invited Study on the biological toxic effects Oryzias melastigma Sijun DONG, Xu ZHANG, Dongxiao DIN Institute of Urban Environment, Chine Sciences 12-12-003 Measurement Informatics for Evaluation and Environment Jun KIKUCHI **RIKEN CSRS** 12-12-104 ► Invited

December 12-13, 2019 -

Symposium I-2

Environmentally Degradable Polymers

Organizers

Jun KIKUCHI (RIKEN CSRS)

Molecular, Material, Product and Pro and Process Control Based on Mate Chemoinformatics and Process Info

Hiromasa KANEKO Meiji University

12-12-105

Invited

Toward optimization of total environ prediction and parameter optimization

Kei TERAYAMA¹

¹RIKEN Center for Advanced Intelligence Project, ²Medical Sciences Innovation Hub Program, RIKEN Cluster for Science, Technology and Innovation Hub, ³Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University

-253-

15:45-16:00

	1	
rom Bio-ba Hideki ABE	nt of Heat-resistant Polymeric Ma ased Chemicals ter for Sustainable Resource Scienc	
1I2-13-K02	►Keynote	9:15-9:45
from Natura Kotaro SAT	Living Polymerization of Function al Resources	al Styrenes
1 2-13-003		9:45-10:00
Applying Sh Yuriko TAK	of Multiple Parallel Gel Filaments near to Polymer Assembly <u>AYAMA</u> , Norihiro KATO a University	by
112-13-104	▶ Invited	10:00-10:20
Polypeptide	atalyzed Polymerization for Synthese with Specific Sequence Motifs SUCHIYA ^{1,2} , Keiji NUMATA ^{1,2} ST-ERATO	esis of
112-13-105	▶ Invited	10:20-10:40
Microspher Ferulic Acic <u>Hironori A1</u> Okayama U	ARASHI	ed from
112-13-106	► Invited	10:40-11:00
Assemblies Toshiki SA	Conductive Hierarchical Molecular Based on Filamentous Viruses WADA ^{1,2} titute of Technology, ² PRESTO-JST	
-	▶ Invited	11:00-11:20
112-13-107	rdroxyalkanoate Biosynthesis Utili Pathways for Amino Acid and Fatt ⁻ SUGE	

December 13, 2019

Poster Session

Time 14:00-15:30 Room Trade-0

I2-13-P01

Characterization of Scratch Damage of Commercial Polymers

Tomoko KAJIWARA¹, Yoshifumi AMAMOTO^{1,2}, Ken KOJIO^{1,2}, Atsushi TAKAHARA^{1,2}

¹Institute for Materials Chemistry and Engineering, Kyushu University, ²International Institute for Carbon-Neutral Energy Research, Kyushu University

I2-13-P02

Preparation and Characterization of Sacran/Imogolite Nanotubes Hybrid Film Prepared by Layer-by-Layer Assembly

Linlin Ll¹, Wei MA², Akihiko TAKADA³, Yuji HIGAKI⁴, Maiko OKAJIMA⁵, Tatsuo KANEKO⁵, Atsushi TAKAHARA^{1,2,3} ¹Graduate School of Engineering, Kyushu University, ²International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, ³Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, ⁴Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, ⁵School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)

I2-13-P03

Refining Messy NMR Data Important for Measurement Informatics

Shunji YAMADA^{1,2}, Atsushi KUROTANI², Eisuke CHIKAYAMA^{2,3}, Jun KIKUCHI^{1,2,4} ¹Nagoya University, ²RIKEN, ³Niigata University of International and Information Studies, ⁴Yokohama City University

I2-13-P04

Methods for Important Factor Extraction toward Membrane Interface Evaluation

Sosei SUZUKI

Graduate School of Medical Life Science, Yokohama City University

I2-13-P05

Analysis of Lignin Degradation by Fungi Isolated from West Coast, Sabah, Malaysia

<u>Clarence M. ONGKUDON</u>, Adznila EBERAHIM, Jun KIKUCHI, Abygail Lorna ERIC, Mailin MISSON, Minami MATSUI, Tomoko MATSUMOTO, Daiki YOKOYAMA Universiti Malaysia Sabah

I2-13-P06

Synthesis of Oligopeptide Containing Natural and Unnatural Amino Acids Toward Environmentally Degradable Polymers

<u>Chie KOGANEMARU</u>¹, Yoshifumi AMAMOTO^{1,2,3}, Atsushi TAKAHARA^{1,2,3}

¹Graduate School of Engineering, Kyushu University, ²Institute for Materials Chemistry and Engineering, Kyushu University, ³International Institute for Carbon-Neutral Energy Research, Kyushu University

I2-13-P07

Integrated Analysis of Biodegradable Plastics for Revealing the Relationship among Physical Properties and Chemical Structures

<u>Ryo YAMAWAKI</u>¹, Yuuri TSUBOI², Akiyo TEI², Kengo ITO^{1,2}, Jun KIKUCHI^{1,2,3}

¹Grad. Sch. Med. Life Sci. , Yokohama City Univ., ²RIKEN CSRS, ³Grad. Sch. Bioagri. Sci., Nagoya Univ.

I2-13-P08

Prediction of 2D J-resolved NMR parameters by combination of machine-learning and quantum chemical computations for molecular complexity

Xiangru XU¹, <u>Kengo ITO^{2,3}, Jun KIKUCHI^{2,3,4}</u>

¹Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, ²RIKEN Center for Sustainable Resource Science, ³Graduate School of Medical Life Science, Yokohama City University, ⁴Graduate School of Bioagricultural Sciences, Nagoya University

December 12-14, 2019 -Symposium I-3

Biodegradable Polymers for Biomedical Applications

Organizer

Masaya YAMAMOTO (Tohoku University)

December 12, 2019

Oral Session 6

Time 16:30-18:25 Room Mont-2

Chairpersons Yasuhiko IWASAKI, Tsuyoshi KIMURA

13-12-101 ► Invited 16:30-16:53

Development of cationic poly(amino acid)s for nucleic acids delivery Kanjiro MIYATA The University of Tokyo

13-12-102 Invited 16:53-17:16

Design of Soft-biomaterials Based on Intermediate Water Contents Masaru TANAKA

Kyushu University

13-12-103 Invited

17:16-17:39

Temperature-Responsive Biodegradable Injectable Polymer Systems Exhibiting Irreversible Gelation for Medical Application

Yuichi OHYA Kansai University

13-12-104 Invited

17:39-18:02

Relationship of Structures and Biomedical Functions for Resorbable Poly(ɛ-caprolactone)-block-Poly(ethylene glycol) Copolymers

Ming-Fa HSIEH

Chung Yuan Christian University

13-12-105 Invited

18:02-18:25

Self-Assembling Elastin-Like Polypeptides as a Platform for Cell Studies

Avae SUGAWARA-NARUTAKI Nagoya University

December 13, 2019

Oral Session 7

Time 9:00-11:25 Room Mont-2

Chairpersons Shang-Hsiu HU, Nobuyuki MORIMOTO

13-13-101 ►Invited

9:00-9:23 Network formation of endothelial cells on decellularized

ECM hydrogels Tsuyoshi KIMURA¹, Janpei KADOTA¹, Naoko NAKAMURA²,

Yoshihide HASHIMOTO¹, Akio KISHIDA¹

¹Tokyo Medical and Dental University, ²Shibaura Institute of Technology

13-13-102 ►Invited

9:23-9:46

Increased Chemoresistance of Tumor Cells on Staged **Tumorigenesis- Mimicking Matrices**

Takashi HOSHIBA

Tokyo Metropolitan Industrial Technology Research Institute

13-13-003

9:46-9:56

Preparation of stepwise osteogenesis-mimicking ECMdeposited PLGA-collagen hybrid meshes for tissue engineering

Yazhou CHEN^{1,2}, Naoki KAWAZOE¹, Guoping CHEN^{1,2} ¹Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan, ²Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan

13-13-104 ► Invited

9:56-10:19 Phosphorus-containing polymers for bone treatment Yasuhiko IWASAKI

Kansai University

13-13-105 ►Invited 10:19-10:42 An Apoptotic Cell-inspired Polymer for Antiinflammatory Therapy Mitsuhiro EBARA

National Institute for Materials Science

13-13-106 Invited

10:42-11:05

A Fish Gelatin-based Soft Tissue Adhesive for **Biomedical Applications** Tetsushi TAGUCHI

National Institute for Materials Science

13-13-007

11:05-11:15

Deformation and formation of Lo phase domains on cell-sized Liposome with membrane-adhesive plasmonic nanomaterials

Tomohiro NOBEYAMA¹, Shigyo KAZUKI², Hirotaka NAKATSUJI³, Hiroshi SUGIYAMA⁴, Tsutomu HAMADA⁵, Tatsuya MURAKAMI^{1,6}

¹Graduate School of Engineering, Toyama Prefectural University, ²Bio-AFM Frontier Research Center, Kanazawa University, ³Graduate School of Engineering, Osaka University, ⁴Graduate School of Science, Kyoto University, ⁵School of Materials Science, Japan Advanced Institute Science and Technology, ⁶Institute for Integrated Cell-Material Sciences, Kyoto University

13-13-008

11:15-11:25

Tunable non-enzymatic degradability of N-substituted polyaspartamide main chain for enhanced mRNA transfection efficiency

Mitsuru NAITO¹, Yuta OTSU¹, Rimpei KAMEGAWA¹, Kotaro HAYASHI², Satoshi UCHIDA^{1,2}, Hyun Jin KIM¹, Kanjiro MIYATA¹

¹The University of Tokyo, ²Innovation Center of NanoMedicine

December 13, 2019 **Oral Session 8**

Time 14:00-15:52 Room Mont-2

Chairpersons Ming-Fa HSIEH, Mitsuhiro EBARA

13-13-109 Invited

14:00-14:23

Polysaccharides-based Docking Hydrogels Bearing **Biodegradable and Robust Functions** Tooru OOYA

Kobe University

13-13-110

Invited

Adaptable Microporous Hydrogels for Neuron

Regeneration

Shang-Hsiu HU National Tsing Hua University

|3-13-|11 Invited

14:46-15:09

14:23-14:46

Ultra-Flexible Nanofilms for Bio-Integrated Device & System

Toshinori FUJIE Tokyo Institute of Technology

13-13-112

Invited

15:09-15:32

Bioresorbable Inorganic/Organic Composite for Bone Repair

Masanori KIKUCHI

National Institute for Materials Science

13-13-013

Cell Separation Column using Temperature-Responsive-**Cationic Copolymer Modified Beads**

Kenichi NAGASE¹, Daimu INANAGA¹, Goro EDATSUNE¹, Yuki NAGATA¹, Aya MIZUTANI AKIMOTO², Hideko KANAZAWA¹

¹Keio University, ²The University of Tokyo

13-13-014

15:42-15:52

15:32-15:42

Development of biomedical be-ta Ti alloys with low Young's modulus by selected laser melting from mixture powder

Mitsuharu TODAI

Department of Environmental Materials Engineering, National Institute of Technology, Niihama College

December 14, 2019

Oral Session 10

Time 9:00-11:29 Room Work-3

Chairpersons Masaya YAMAMOTO, Jun-ichiro JO

13-14-101 Invited

9:00-9:23

Biodegradable characteristics of octacalcium phosphate-based bone substitute materials involving osteoclastic cellular activity

Osamu SUZUKI, Yukari SHIWAKU, Ryo HAMAI Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry

13-14-102

Invited

9:23-9:46

Development of Intracellular Controlled Release Technologies Based on Biodegradable Polymer Nanoparticles to Modify Cellular Biological Activities

Jun-ichiro JO, Yasuhiko TABATA Kyoto University

13-14-103 Invited

Surface Modification of Silica Nanoparticles Using 4-Aryloxy Boron Dipyrromethene (BODIPY) Enhances Skin Permeation

Masaru KATO

Showa University

13-14-004

10:09-10:19

10:19-10:29

9:46-10:09

Reversible Stabilization of Messenger RNA-loaded Polyion Complex by Degradable Silica Shell

Rimpei KAMEGAWA¹, Mitsuru NAITO², Satoshi UCHIDA¹, Hyun Jin KIM², Kanjiro MIYATA¹

¹Graduate School of Engineering, The University of Tokyo, ²Graduate School of Medicine, The University of Tokyo

13-14-005

Design of sulfobetaine polymers for mitochondrial deliverv

Nobuyuki MORIMOTO, Yoshifumi OISHI, Masaya YAMAMOTO Tohoku University

13-14-006

10:29-10:39

Bifunctional scaffolds for photothermal breast cancer therapy and adipose tissue regeneration

Xiuhui WANG¹, Naoki KAWAZOE¹, Guoping CHEN^{1,2} ¹Research Center for Functional Materials, National Institute for Materials Science, ²Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba

13-14-007

10:39-10:49

Stimulation of Endogenous VEGF Secretion by Dodecyl group-modified Injectable Hydrogel

Yosuke MIZUNO¹, Tetsushi TAGUCHI^{1,2}

¹University of Tsukuba, ²National Institute for Materials Science

13-14-008

10:49-10:59

New Cell Separation System using Mixed Temperatureresponsive and Cationic Polymer Brushes

Haruno WAKAYAMA, Kenichi NAGASE, Hideko KANAZAWA Keio University

13-14-009

10:59-11:09

Regulation of Mesenchymal Stem Cells Transfection through Micropatterned Surfaces

<u>Yongtao WANG</u>¹, Yingjun YANG^{1,2}, Naoki KAWAZOE¹, Guoping CHEN^{1,2}

¹National Institute of Materials for Science, ²University of Tsukuba

13-14-010

11:09-11:19

Design of Cell Membrane Anchoring molecules for cell labeling

George MOGAMI Tohoku University

13-14-011

11:19-11:29

Magnetic Force-Assisted Sandwich Culture to Create 3D Microenvironment for Epithelial Cells

<u>Masaya YAMAMOTO</u>, Mayumi TOKUDA, Taiga SUTO Tohoku University